Transients, fast and slow

Types of Radio Transients

Slow = Incoherent

- Typically synchrotron emission
- Variable on timescales of seconds years
- Brightness temperature limited to <10¹² K
- Typically discovered in image data

Examples:

- AGN and Microquasar jets
- Supernovae & GRBs afterglows
- Black hole tidal disruption events (TDEs)
- Giant flares from magnetars

Fast=Coherent

- Various flavors of coherent emission
- Variable on timescales of ns minutes
- Brightness temperatures as high as >10³⁸ K
- Typically discovered in time-series data

Examples:

- Various classes of neutron stars
- Galactic Center Radio Transients
- Planets and Exoplanets
- Stellar bursts and pulsing brown dwarfs

Radio Phase Space

Be a Cartographer: Systematically survey the variable and transient radio sky

Credit: G. Bower

Basic Questions About the Radio Sky

- I. What do we know about the quiescent radio sky?
 - How do the populations vary with flux density and frequency?
- 2. What fraction of radio sources are variable?
 - On what flux level, at what frequency, and at what timescale?
- 3. What are the most common long duration transients?
 - "Know your background". What are the "asteroids" of the radio sky?
 - i.e. m<21 mag asteroids are 10⁻² (in ecliptic) to 10⁻⁴ of the persistent optical sky. A significant false-positive for other transient searches.

Collaborators: S. Kulkarni, G. Hallinan, K. Moody, S. Burke, A. Horesh, U. Nakar, E. Ofek, G. Bower, M. Kasliwal, B. Breslauer and more.

The VLA and PTF Stripe-82 Project

A Revised View of the GHz Transient Sky

Transient radio sky is even quieter than originally thought

Implications for future survey design.

Mooley et al. (2012)

Basic Questions About the Radio Sky Answers

- The quiescent radio sky is boring
 - It is sparsely populated (S>I mJy) 90 sources deg²)
 - Isotropic source distribution on sky
 - >I mJy source populations are radio-loud AGN
 - <1 mJy star-formation galaxies and radio-quite AGN start to emerge
- The variable radio sky is boring
 - The fraction of strong variables at I GHz is small << 1%</p>
 - AGNs appear to dominate the variable sky
- The (revised) transient radio sky is really boring
 - Transients are <= 10⁻⁴ of the quiescent population

Seeing is Believing: EM-GW Counterparts

Act Like A Buccaneer: Own the Follow-up

Follow-up: A biased but rewarding approach

Radio Transient Phase Space: Simplified

Tidal disruption events (TDEs) Extragalactic Long duration GRBs Relativistic supernovae (SNe) Short duration GRBs Type II SNe Type I b/c SNe Novae and CVs Galactic Soft gamma-ray repeaters HMXBs and LMXBs GC transients Flare stars **Brown Dwarfs**

Fast Transients: A pragmatic definition

- Intense, short duration (ct<1 s) activity from a compact object
- Pulse profile affected by plasma propagation effects, including dispersive smearing and interstellar scattering
- Fast transients can be either cataclysmic or repeatable
- Probe extremes of gravity, magnetism and/or states of matter
- Requires a non-thermal, i.e. coherent emission mechanism
 - There is no theory that can predict a priori what the specific intensity will be for a pulsed, coherent source

Radio Transient Phase Space: Simplified

Extragalactic

Fast radio bursts?
(Prompt GRBs?)
(Evaporating BH's?)

Tidal disruption events (TDEs)
Long duration GRBs
Relativistic supernovae (SNe)
Short duration GRBs
Type II SNe
Type I b/c SNe

Galactic

Crab giant pulses
Normal and msec pulsars
Nulling PSRs
RRATs
Rotating magnetars
(extrasolar planets)

Novae and CVs
Soft gamma-ray repeaters
HMXBs and LMXBs
GC transients
Flare stars
Brown Dwarfs

Short duration

Long duration

Plasma Propagation I: Dispersion

- Cold plasma dispersive delay, i.e. radio signals at lower frequencies arriving later than higher ones
- Without correction, pulse is temporally smeared
- DM (Galactic pole)=30 pc cm⁻³ or electron column $N_e=10^{20}$ cm⁻²
- Negative: Computational overhead. Must search for unknown DM in data reduction
- Positive: Excellent probe of ionized gas (i.e. IGM)

 $\tau_{DM} = 2.9 \text{ usec } DM^{-1}MHz^{-1} \text{ at } 1.4 \text{ GHz}$

Plasma Propagation II: Scattering

- Multi-path scattering results in a broadening of pulsed signal
- Fluence is conserved
- A frequency "wall" below which you cannot see pulsations under some given period P > 5τ_{scat}
- Single pulses have an advantage over period pulses
- Deal with ISS through appropriate observing strategy.

$$\tau_{ISS} \propto \nu^{-4.4}$$

Lorimer and Kramer (2005)

Burke-Spolar astro-ph/1212.1716

Classes of fast transients: neutron stars

- Repeating, galactic sources with coherent emission processes
- Pulsars, nulling pulsars, magnetars, rotating radio transients (RRATs) and
 Crab giant pulses all originate from magnetized, rotating neutron stars

Classes of fast transients: RRATs

- Identified as single, dispersed pulses with durations 2-30 msec
- Repeat stochastically every few minutes to a ~hours at same DM
- Periods from 0.4 s to 7 s
- Concentrated in the galactic plane
- Some evidence that RRATs bridge an evolutionary gap between normal pulsars and magnetars in the P-Pdot diagram

McLaughlin et al. (2006)

Classes of fast transients: RRATs

- Identified as single, dispersed pulses with durations 2-30 msec
- Repeat stochastically every few minutes to a ~hours at same DM
- Periods from 0.4 s to 7 s
- Concentrated in the galactic plane
- Some evidence that RRATs bridge an evolutionary gap between normal pulsars and magnetars in the P-Pdot diagram

Classes of fast transients: Flare Stars

- The Sun, magnetically active stars and brown dwarfs all undergo dramatic flaring behavior
- Burst durations last typically 10s to 10's min
- Relatively rare or understudied
- Typically nearby, d<30 pc
- Strongly circularly polarized

Spangler & Moffett (1976)

Fast Radio Bursts (FRBs aka Furbies)

- Single, intense millisecond bursts
- Parkes Observatory has now detected seven fast radio bursts.
 Arecibo has detected one
- Dispersion measure in excess of galactic values suggest extragalactic
 - Implied redshift z~0.5 to 1.5
- Implied rate is ~10,000/day all sky
- Next step is to verify and obtain an arcsecond localization
 - to enable host ID and distance measurement

Thornton et al (2013)

Current VLA Capabilities for Time Domain

- Full-band frequency coverage tunable from 1 to 50 GHz
- Micro-Jy continuum sensitivity in snapshot observations
- Wide instantaneous bandwidth (2 to 8 GHz) allows for easy spectral index measurements
- Regular proposals as "Triggered Transients" and DDT proposals
- Dynamic scheduling of the array and coordinated scheduling with other Observatories (e.g. Chandra)
- A pipeline that produces calibrated visibility data
- A wide array of special modes, including pulsar modes, independent sub-arrays, phased array, and fast dumps

Planned VLA Capabilities for Time Domain

- √ Fast dumps
- ✓ On the fly (OTF) imaging
- Pulsar modes
- Commensal observing
- Automated rapid response to external triggers

Fast Radio Bursts at the VLA

- VLA has high instantaneous sensitivity, wide FoV and arcsecond localization
- Approved DDT and Regular proposal (Law et al.) 300 hrs in fast-sampling mode
 - 1 Tb/hr data rate
 - 150 hrs already observed.
 Processing is complete.
- Funding proposal underway for a real-time commensal system with fast imaging, trigger and data buffer system

All FRBs, all the time.

On-the-fly (OTF) imaging and EM counterparts to gravitational waves

- Instantaneous sensitivity of VLA is very large, FoV is relatively small
- OTF: antennas continuously slewed while stepping phase centers
- Ideal for surveys (e.g.VLASS) and for irregularly shaped error boxes expected for EM counterpart searches of GW

27

Pulsar Modes

- Phased array VLA data processed in the WIDAR correlator or the correlator back end (CBE) computing nodes.
- Will allow searches (e.g. Galactic Center), pulsar timing for Nanograv and simultaneous pulsed/imaging experiments (PWN, GC)
- NM staff + Demorest, Lazio and Ransom

Hot-wiring the VLA

- Autonomous response to external triggers via GCN socket or VOEvent alert
- VLA can slew to any part of sky in 4 min on average
- Already working on VLBA
- Software effort needed to bypass dynamic scheduler
- Limited science case
 - Prompt GRB emission
 - Flare stars
 - FRB "afterglows"

Commensal Observing with LOBO

- A joint NRL-NRAO design concept
- Observe with the VHF systems at the prime focus in parallel with the Cassegrain system
 - -P band 236-492 MHz
 - -4 band 54-86 MHz
- Capture full band and independently correlate
- A radio LSST A 24/7 synoptic, wide-field imager slaved to the Cassegrain science pointings

The Low Band Observatory (LOBO)

- Main science drivers
 - Real-time, remote sensing of the ionosphere (NRL, DoD, NASA, etc.)
 - Radio transient detection (large FoV and ToS)
 - Range of low-frequency galactic and extra-galactic science

V-LITE. A LOBO Prototype

- US Navy (NRL) funded a Kassim and Ray proposal for \$1.07M
- With design, development, etc. builds a 10-element prototype
- Design is P band only, 64 MHz BW, 8 bit
- Project complete October 2014.
- Expected to be ready for B config in 2015
- Transients
 - Galactic center transients (Hyman et al) 20 events
 - Slow transients (Jaeger et al. 2011) 100 events in 5000 hrs
 - Fast transients (FRBs). 60 Lorimer-like events per year but requires a fast transient detection. Looking into a GPU-based system.

Transients at the VLA

- Broad-band, solar flare science at msec time resolution
- Active flare stars and brown dwarf emission mechanisms
- Localizing Rotating Radio Transits (RRATs)
- Non-thermal emission from Galactic novae
- Jet formation in BH, NS and WD binaries
- Full-band monitoring of G2 encounter of Sgr A*. (Public data)
- Exposing the full diversity of supernova explosions (la, luminous lb/c, BL lc, fast lb/c, Iln, IIL, IIP, Ilb, etc)
- Discovery of new class of (relativistic) tidal disruption event (TDEs)
- Gamma-ray bursts (RS, SHB, z<0.3, z>6, high E, etc.)
- Systematic exploration of the transient radio sky
 - Confirming and localizing fast radio bursts