Calibration

George Moellenbrock, NRAO
Synopsis

• Why do we have to calibrate?
• Idealistic formalism → Realistic practice
• Fundamental Calibration Principles
 – Practical Calibration Considerations
 – Baseline-based vs. Antenna-based Calibration
 – Solving
• Scalar Calibration Example
• Generalizations
 – Full Polarization
 – A Dictionary of Calibration Effects
 – Calibration Heuristics and ‘Bootstrapping’
• New Calibration Challenges
• Summary
References

• Synthesis Imaging in Radio Astronomy II (Editors: Taylor, Carilli, & Perley)
• Interferometry and Synthesis in Radio Astronomy (2nd ed. Thompson, Moran, & Swenson)
• Tools of Radio Astronomy (6th ed., Wilson, Rohlfs, & Huettemeister)
Why Calibration?

- Synthesis radio telescopes, though well-designed, are not perfect (e.g., surface accuracy, receiver noise, polarization purity, gain stability, geometric model errors, etc.)
- Need to accommodate deliberate engineering (e.g., frequency down-conversion, analog/digital electronics, filter bandpass, etc.)
- Hardware or control software occasionally fails or behaves unpredictably
- Scheduling/observation errors sometimes occur (e.g., wrong source positions)
- Atmospheric conditions not ideal
- Radio Frequency Interference (RFI)

Determining instrumental and environmental properties (calibration) is a prerequisite to determining radio source properties.
From Idealistic to Realistic

• Formally, we wish to use our interferometer to obtain the visibility function:

\[
V(u, v) = \int_{\text{sky}} I(l, m) e^{-i 2\pi (ul + vm)} dldm
\]

• …a Fourier transform which we intend to invert to obtain an image of the sky:

\[
I(l, m) = \int_{uv} V(u, v) e^{i 2\pi (ul + vm)} dudv
\]

– \(V(u, v)\) describes the amplitude and phase of 2D sinusoids that add up to an image of the sky
 • Amplitude: “~how concentrated?”
 • Phase: “~where?”
 • c.f. Young’s Double-Slit Interference Experiment (1804)

• How do we measure \(V(u, v)\)?
How do we measure $V(u,v)$?

- Consider direction-dependent arrival geometry for E-field disturbance reception at two points, i and j, relative to the phase center direction.

\[
d = (w_\lambda + u_\lambda \tan \theta) \cos \theta - w_\lambda
\]
\[
= u_\lambda \sin \theta + w_\lambda (\cos \theta - 1)
\]
\[
d(l) = u_\lambda l + w_\lambda \left(\sqrt{1 - l^2} - 1 \right) \quad (1D)
\]
\[
\left(\sin \theta = l; \quad \cos \theta = \sqrt{1 - l^2} \right)
\]
\[
d(l,m) = u_\lambda l + v_\lambda m + w_\lambda \left(\sqrt{1 - l^2 - m^2} - 1 \right) \quad (2D)
\]
\[
\approx u_\lambda l + v_\lambda m \quad (l,m \ll 1)
\]

Direction-dependent signals: \(s_j = s_i e^{i 2 \pi d(l,m)} \)
How do we measure $V(u,v)$?

- Correlate the E-field disturbances, x_i & x_j arriving at spatially separate sensors
 - delay-aligned for the phase-center
 - s_i & s_j are the direction-dependent E-field disturbances
- Direction integral and product can be reversed, because the E-field disturbances from different directions don’t correlate
- s_i and s_j (for a specific direction) differ only by a phase factor given by the arrival geometry
- $\langle |s_j|^2 \rangle$ is proportional to the brightness distribution, $I(l,m)$
But in reality…

- Weather
- Realistic Antennas
- Electronics…
- Digital correlation
- …and the whole is moving!

Drew Medlin
Realistic Visibility

- So, in practice, we obtain an imperfect visibility measurement:

\[V_{ij}^{obs} (u, v) = \left\langle x_i(t) \cdot x_j^*(t) \right\rangle_{\Delta t} = J_{ij} V_{ij}^{true} (u, v) \]

- \(x_i\) & \(x_j\) are mutually delay-compensated for the phase center
- Averaging duration is set by the expected timescales for variation of the correlation result (~seconds)
- \(J_{ij}\) is a generalized operator characterizing the net effect of the observing process for antennas \(i\) and \(j\) on baseline \(ij\), which we must calibrate
 - Includes any required scaling to physical units
- Sometimes \(J_{ij}\) corrupts the measurement irrevocably, resulting in data that must be edited or “flagged”
Realistic Visibility: Noise

- Normalized visibility: \(\sigma_{ij} = \frac{1}{\sqrt{2\Delta \nu \Delta t}} \)
 - Extra 2 (cf single-dish) comes from formation from separate telescopes

- Absolute visibility:
 \[\sigma_{ij} = \frac{\sqrt{T_i T_j}}{\sqrt{2\Delta \nu \Delta t}} \]
 - \(T_i, T_j \) are the system temperatures (total sampled powers), in whatever units the corresponding data are in
 - (The numerator, as measured by the correlator, is the factor by which visibilities are typically normalized, e.g. ALMA)

- Formal Visibility Weights:
 \[w_{ij} = \frac{1}{\sigma_{ij}^2} \]
Practical Calibration Considerations

• A priori “calibrations” (provided by the observatory)
 – Antenna positions, earth orientation and rate, clock(s), frequency reference
 – Antenna pointing/focus, voltage pattern, gain curve
 – Calibrator coordinates, flux densities, polarization properties

• Absolute engineering calibration (dBm, K, volts)?
 – Amplitude: episodic (ALMA) or continuous (EVLA/VLBA) T_{sys} or switched-power monitoring to enable calibration to nominal K (or Jy, with antenna efficiency information)
 – Phase: WVR (ALMA), otherwise practically impossible (relative antenna phase)
 – Traditionally, we concentrate instead on ensuring instrumental stability on adequate timescales

• Cross-calibration a better choice
 – Observe strong astronomical sources near science target against which calibration (j_{ij}) can be solved, and transfer solutions to target observations
 – Choose appropriate calibrators; usually point sources because we can easily predict their visibilities (Amp ~ constant, phase ~ 0)
 – Choose appropriate timescales for calibration
“Absolute” Astronomical Calibrations

• Flux Density Calibration
 – Radio astronomy flux density scale set according to several “constant” radio sources, and planets/moons
 – Use resolved models where appropriate

• Astrometry
 – Most calibrators come from astrometric catalogs; sky coordinate accuracy of target images tied to that of the calibrators
 – Beware of resolved and evolving structures, and phase transfer biases due to troposphere (especially for VLBI)

• Polarization
 – Usual flux density calibrators also have significant stable linear polarization position angle for registration
 – Calibrator circular polarization usually assumed zero (?)

• Relative calibration solutions (and dynamic range) insensitive to errors in these “scaling” parameters
Baseline-based Cross-Calibration

\[V_{ij}^{obs} = J_{ij} V_{ij}^{mod} \]

- Simplest, most-obvious calibration approach: measure complex response of each baseline on a standard source, and scale science target visibilities accordingly
 - “Baseline-based” Calibration:
- Only option for single baseline “arrays”
- Calibration precision same as calibrator visibility sensitivity (on timescale of calibration solution). Improves only with calibrator strength.
- Calibration accuracy sensitive to departures of calibrator from assumed structure
 - Un-modeled calibrator structure transferred (in inverse) to science target!
Antenna-based Cross Calibration

• Measured visibilities are formed from a product of *antenna-based* signals. Can we take advantage of this fact?
Antenna-based Cross Calibration

• The net time-dependent E-field signal sampled by antenna \(i \), \(x_i(t) \), is a combination of the desired signal, \(s_i(t,l,m) \), corrupted by a factor \(J_i(t,l,m) \) and integrated over the sky \((l,m)\), and diluted by noise, \(n_i(t) \):

\[
x_i(t) = \int_{sky} J_i(t,l,m)s_i(t,l,m)dldm + n_i(t)
\]

\[
= s'_i(t) + n_i(t)
\]

• \(x_i(t) \) is sampled (complex) voltage provided to the correlator input
• \(J_i(t,l,m) \) is the product of a series of effects encountered by the incoming signal
• \(J_i(t,l,m) \) is an antenna-based complex number
• Usually, \(|n_i|^2 >> |s'_i|^2\) (i.e., noise dominates)
Correlation of Realistic Signals - I

- The correlation of two realistic (aligned for a specific direction) signals from different antennas:
 \[
 \langle x_i \cdot x_j^* \rangle_{\Delta t} = \left\langle \left(s_i' + n_i \right) \cdot \left(s_j' + n_j \right)^* \right\rangle_{\Delta t}
 = \left\langle s_i' \cdot s_j'^* \right\rangle_{\Delta t} + \left\langle s_i' \cdot n_j^* \right\rangle_{\Delta t} + \left\langle n_i \cdot s_j'^* \right\rangle_{\Delta t} + \left\langle n_i \cdot n_j^* \right\rangle_{\Delta t}
 = \left\langle s_i' \cdot s_j'^* \right\rangle_{\Delta t}
 \]

- Noise correlations have zero mean—even if \(|n_i|^2 >> |s_i|^2\), the correlation process isolates desired signals:

- Same analysis as before, except we carry \(J_i J_j \) terms

\[
\begin{align*}
= & \left\langle \int J_i s_i \, dl_i \, dm_i \cdot \int J_j^* s_j^* \, dl_j \, dm_j \right\rangle_{\Delta t} \\
= & \left\langle \int J_i J_j^* s_i s_j^* \, dl \, dm \right\rangle_{\Delta t} \\
= & \int J_i J_j^* I(l, m) e^{-i2\pi(u_l+v_m)} \, dl \, dm
\end{align*}
\]
The Scalar Measurement Equation

\[V_{ij}^{obs} = \int_{\text{sky}} J_i J_j^* I(l,m) e^{-i2\pi(u_{ij}l+v_{ij}m)} \, dl \, dm \]

- First, isolate non-direction-dependent effects, and factor them from the integral:

\[= (J_i \text{vis} J_j^{\text{vis}*}) \int_{\text{sky}} (J_i^{\text{sky}} J_j^{\text{sky}*}) I(l,m) e^{-i2\pi(u_{ij}l+v_{ij}m)} \, dl \, dm \]

- Next, we recognize that over small fields of view, it is possible to assume \(J_{\text{sky}} = 1.0 \), and we have a relationship between ideal and observed Visibilities:

\[= J_i J_j^* \int_{\text{sky}} I(l,m) e^{-i2\pi(u_{ij}l+v_{ij}m)} \, dl \, dm \]

\[V_{ij}^{obs} = J_i J_j^* V_{ij}^{\text{true}} \]

- Standard calibration of most existing arrays reduces to solving this last equation for the \(J_i \), assuming a visibility model \(V_{ij}^{\text{mod}} \) for a calibrator

- NB: visibilities corrupted by difference of antenna-based phases, and product of antenna-based amplitudes
Aside: Auto-correlations and Single Dishes

- The auto-correlation of a signal from a single antenna:

\[
\langle x_i \cdot x_i^* \rangle_{\Delta t} = \left\langle (s_i' + n_i) \cdot (s_i' + n_i)^* \right\rangle_{\Delta t}
\]

\[
= \left\langle s_i' \cdot s_i'^* \right\rangle + \left\langle n_i \cdot n_i^* \right\rangle
\]

\[
= \left\langle \int_{\text{sky}} |J_i|^2 |s_i|^2 dldm \right\rangle_{\Delta t} + \left\langle |n_i|^2 \right\rangle
\]

\[
= \int_{\text{sky}} |J_i|^2 I(l,m)dldm + \left\langle |n_i|^2 \right\rangle
\]

- This is an integrated (sky) power measurement plus non-zero-mean noise, i.e., the \(T_{\text{sys}} \)

- Desired signal not simply isolated from noise

- Noise usually dominates

- Single dish radio astronomy calibration strategies rely on switching (differencing) schemes to isolate desired signal from the noise
Solving for the \(J_i \)

• We can write:
\[
V_{ij}^{\text{obs}} - J_i J_j^* V_{ij}^{\text{mod}} = 0
\]

• …and define chi-squared:
\[
\chi^2 = \sum_{i,j} \frac{w_{ij}}{\sigma_{ij}^2} \left(V_{ij}^{\text{obs}} - J_i J_j^* V_{ij}^{\text{mod}} \right)^2
\]

• …and minimize chi-squared w.r.t. each \(J_i^* \), yielding (iteration):
\[
J_i = \sum_{j \neq i} \left(V_{ij}^{\text{obs}} J_j V_{ij}^{\text{mod}} w_{ij} \right) \left/ \sum_{j \neq i} \left(|J_j|^2 V_{ij}^{\text{mod}} w_{ij} \right) \right.
\left(\frac{\partial \chi^2}{\partial J_i^*} = 0 \right)
\]

• (…which we may be gratified to recognize as a peculiarly weighted average of the implicit \(J_i \) contribution to \(V^{\text{obs}} \).)
Solving for J_i (cont)

- **Formal errors:**

$$\sigma_{J_i} = \sqrt{\sum_{j \neq i} \left| V_{ij}^{mod} \right|^2 \left| J_j \right|^2 / \sigma_{ij,\Delta t}^2}$$

- For a ~uniform array (~same sensitivity on all baselines, ~same calibration magnitude on all antennas) and point-like calibrator:

$$\sigma_{J_i} \approx \frac{\sigma_{ij,\Delta t}}{\left| V^{mod} \right| \sqrt{\left\langle \left| J_j \right|^2 \right\rangle} (N_{ant} - 1)}$$

- Calibration error decreases with increasing calibrator strength and square-root of N_{ant} (c.f. baseline-based calibration).

- Other properties of the antenna-based solution:
 - Minimal degrees of freedom (N_{ant} factors, $N_{ant}(N_{ant}-1)/2$ measurements)
 - Net calibration for a baseline involves a phase difference, so *absolute* directional information is lost
 - Closure…
Antenna-based Calibration and Closure

• Success of synthesis telescopes relies on antenna-based calibration
 – Fundamentally, any information that can be factored into antenna-based terms, could be antenna-based effects, and not source visibility
 – For $N_{ant} > 3$, source visibility information cannot be entirely obliterated by any antenna-based calibration

• Observables independent of antenna-based calibration:
 – Closure phase (3 baselines):
 \[
 \phi_{ij}^{obs} + \phi_{jk}^{obs} + \phi_{ki}^{obs} = (\phi_{ij}^{true} + \theta_i - \theta_j) + (\phi_{jk}^{true} + \theta_j - \theta_k) + (\phi_{ki}^{true} + \theta_k - \theta_i)
 \]
 \[
 = \phi_{ij}^{true} + \phi_{jk}^{true} + \phi_{ki}^{true}
 \]
 – Closure amplitude (4 baselines):
 \[
 \begin{vmatrix}
 V_{ij}^{obs} & V_{kl}^{obs} \\
 V_{ik}^{obs} & V_{jl}^{obs}
 \end{vmatrix} = \begin{vmatrix}
 J_i J_j V_{ij}^{true} & J_k J_l V_{kl}^{true} \\
 J_i J_k V_{ik}^{true} & J_j J_l V_{jl}^{true}
 \end{vmatrix} = \begin{vmatrix}
 V_{ij}^{true} & V_{kl}^{true} \\
 V_{ik}^{true} & V_{jl}^{true}
 \end{vmatrix}
 \]

• Baseline-based calibration formally violates closure!
Reference Antenna

• Since the “antenna-based” phase solution is derived from antenna phase differences, we do not measure phase absolutely
 – relative astrometry
• Phase solutions typically referred to a specific antenna, the refant, which is assumed to have constant phase (zero, in both polarizations)
 – refant typically near array center
 – The refant’s phase variation distributed to all other antennas’ solutions
 – For adequate time sampling, ensures reliable interpolation of phase, without ambiguity (c.f. arbitrary phase offsets between solutions)
 – Asserts stable cross-hand phase frame (which must be calibrated)
• Problems:
 – A single good refant not always available over whole observation, due to flagging, etc.
 – Cross-hand phase at refant may not, in fact, be stable…
Corrected Visibility

- Visibility...

\[V_{ij}^{\text{obs}} = J_i J_j^* V_{ij}^{\text{true}} \quad \rightarrow \quad V_{ij}^{\text{cor}} = J_i^{-1} J_j^{-*1} V_{ij}^{\text{obs}} \]

- ...and weights!

\[w_{ij}^{\text{cor}} = w_{ij}^{\text{obs}} \left| J_i \right|^2 \left| J_j \right|^2 = \frac{\left| J_i \right|^2 \left| J_j \right|^2}{\sigma_{ij}^2} \]

- (calibrate the sigmas)
What Is Delivered by a Synthesis Array?

• An enormous list of complex visibilities! *(Enormous!)*
 – At each timestamp (~1-10s intervals): \(N(N-1)/2 \) baselines
 • EVLA: 351 baselines
 • VLBA: 45 baselines
 • ALMA: 1225-2016 baselines
 – For each baseline: up to 64 Spectral Windows (“spws”, “subbands” or “IFs”)
 – For each spectral window: tens to thousands of channels
 – For each channel: 1, 2, or 4 complex correlations (polarizations)
 • EVLA or VLBA: RR or LL or (RR,LL), or (RR,RL,LR,LL)
 • ALMA: XX or YY or (XX,YY) or (XX,XY,YX,YY)
 – With each correlation, a weight value and a flag (T/F)
 – Meta-info: Coordinates, antenna, field, frequency label info

• \(N_{\text{total}} = N_t \times N_{\text{bl}} \times N_{\text{spw}} \times N_{\text{chan}} \times N_{\text{corr}} \) visibilities
 – \(\sim \)few \(10^6 \times N_{\text{spw}} \times N_{\text{chan}} \times N_{\text{corr}} \) vis/hour \(\rightarrow \) 10s to 100s of GB per observation
A Typical Dataset (Polarimetry)

- **Array:**
 - EVLA D-configuration (Apr 2010)

- **Sources:**
 - Science Target: 3C391 (7 mosaic pointings)
 - Near-target calibrator: J1822-0938 (~11 deg from target)
 - Flux Density calibrator: 3C286
 - Instrumental Polarization Calibrator: 3c84

- **Signals:**
 - RR,RL,LR,LL correlations
 - One spectral window centered at 4600 MHz, 128 MHz bandwidth, 64 channels
The Array
UV-coverages

3C286
Flux Density

J1822-0938
Gain Calibrator

3C391
Science Target

3C84
Instr. Poln Calibrator
The Visibility Data (source colors)
The Visibility Data (baseline colors)
The Visibility Data (baseline colors)
The Visibility Data (baseline colors)

Phase vs. Time

Time (from 2010/04/24)

Baseline to antenna ea21
A Single Baseline – Amp (source colors)
A Single Baseline – Phase (source colors)
A Single Baseline – 2 scans on 3C286
Single Baseline, Single Integration Visibility Spectra (4 correlations)

baseline ea17-ea21
Single Baseline, Single Scan Visibility Spectra (4 correlations)

baseline ea17-ea21
Single Baseline, Single Scan (time-averaged) Visibility Spectra (4 correlations)

baseline ea17-ea21
Data Examination and Editing

• After observation, initial data examination and editing very important
 – Will observations meet goals for calibration and science requirements?
• What to edit (much of this is now automated):
 – Some real-time flagging occurred during observation (antennas off-source, LO out-of-lock, etc.). Any such bad data left over? (check operator’s logs)
 – Any persistently ‘dead’ antennas (check operator’s logs)
 – Periods of especially poor weather? (check operator’s log)
 – Any antennas shadowing others? Edit such data.
 – Amplitude and phase should be continuously varying—edit outliers
 – Radio Frequency Interference (RFI)?
• Caution:
 – Be careful editing noise-dominated data.
 – Be conservative: those antennas/timeranges which are obviously bad on calibrators are probably (less obviously) bad on weak target sources—edit them
 – Distinguish between bad (hopeless) data and poorly-calibrated data. E.g., some antennas may have significantly different amplitude response which may not be fatal—it may only need to be calibrated
 – Choose (phase) reference antenna wisely (ever-present, stable response)
• Increasing data volumes increasingly demand automated editing algorithms…
Editing Example

Amp vs. Time

Spw: 0 Ch: <22~41> Corr: RR

3C84 (Instr. poln)

3C286 (flux density)

J1822-0938 (cal) alt. with 3C391 Mosaic Pointings
Editing Example

Amp vs. Time

Scans 34-41
Scan transitions/setup
Dead antenna Slew
Editing Example

Amp vs. Time

Scans 34-41

Flagged

Amp

Time (from 2010/04/24)
Editing Example (before)
Editing Example (after)
Simple Scalar Calibration Example

• Array:
 – EVLA D-configuration (Apr 2010)

• Sources:
 – Science Target: 3C391 (7 mosaic pointings)
 – Near-target calibrator: J1822-0938 (~11 deg from target; unknown flux density, assumed 1 Jy)
 – Flux Density calibrator: 3C286 (7.747 Jy, essentially unresolved)

• Signals:
 – RR correlation only for this illustration (total intensity only)
 – One spectral window centered at 4600 MHz, 128 MHz bandwidth
 – 64 observed spectral channels averaged with normalized bandpass calibration applied (this illustration considers only the time-dependent ‘gain’ calibration)
 – (extracted from a continuum polarimetry mosaic observation)
Views of the Uncalibrated Data
Views of the Uncalibrated Data
Views of the Uncalibrated Data
Uncalibrated Images

J1822-0938
(calibrator)

3C391
(science)
Rationale for Antenna-based Calibration

Phase vs. Time

Time (from 2010/04/24)
The Calibration Process

• Solve for antenna-based gain factors for each scan on all calibrators (V_{mod}^S for f.d. calibrator; $V_{mod}^d=1.0$ for others):

$$V_{ij}^{obs} = G_i G_j^* V_{ij}^{mod}$$

• Bootstrap flux density scale by enforcing gain consistency over all calibrators:

$$\left\langle G_i / G_i (f d \text{ cal}) \right\rangle_{time, \text{ antennas}} = 1.0$$

• Correct data (interpolate, as needed):

$$V_{ij}^{cor} = G_i^{-1} G_j^{*-1} V_{ij}^{obs}$$
The Antenna-based Calibration Solution

- Reference antenna: ea21 (phase = 0)
The Antenna-based Calibration Solution

![Diagram showing time series data with labels ea17, ea12, and ea21 (refant).]
The Antenna-based Calibration Solution

- 3C286’s gains have correct scale
- Thus, J1822-0938 is 2.32 Jy (not 1.0 Jy, as assumed)
Effect of Antenna-based Calibration: Phase (before)
Effect of Antenna-based Calibration Phase (after)
Effect of Antenna-based Calibration
Effect of Antenna-based Calibration

CALIBRATED

Amp vs. Time

Phase vs. Time
Effect of Antenna-based Calibration

![Amp vs. UVDist graphs for 3C286, J1822-0938, and 3C391 (central field)]
Effect of Antenna-based Calibration

CALIBRATED
Effect of Antenna-based Calibration
Effect of Antenna-based Calibration

Phase vs. UVDist

3C286

Phase vs. UVDist

J1822-0938

Phase vs. UVDist

3C301 (central field)

CALIBRATED
Calibration Effect on Imaging

J1822-0938
(calibrator)

3C391
(science)
Calibration Effect on Imaging

J1822-0938
(calibrator)

3C391
(science)
Calibration Effect on Imaging

J1822-0938
(calibrator)

3C391
(science)
Calibration Effect on Imaging

- J1822-0938 (calibrator)
- 3C391 (science)

Dave Wilner’s lecture “Imaging and Deconvolution” (this afternoon!)
Evaluating Calibration Performance

• Are solutions continuous?
 – Noise-like solutions are just that—noise (beware: calibration of pure noise generates a spurious point source)
 – Discontinuities indicate instrumental glitches (interpolate with care)
 – Any additional editing required?

• Are calibrator data fully described by antenna-based effects?
 – Phase and amplitude closure errors are the baseline-based residuals
 – Are calibrators sufficiently point-like? If not, self-calibrate: model calibrator visibilities (by imaging, deconvolving and transforming) and resolve for calibration; iterate to isolate source structure from calibration components
 • Crystal Brogan’s lecture: “Advanced Calibration” (Thursday)

• Any evidence of unsampled variation? Is interpolation of solutions appropriate?
 – Reduce calibration timescale, if SNR permits

• Greg Taylor’s lecture: “Error Recognition” (Monday)
Summary of Scalar Example

- Dominant calibration effects are *antenna-based*
 - Minimizes degrees of freedom
 - More precise
 - Preserves closure
 - Permits higher dynamic range safely!

- Point-like calibrators effective
- Flux density bootstrapping
Generalizations

• Full-polarization Matrix Formalism
• Calibration Effects Factorization
• Calibration Heuristics and ‘Bootstrapping’
Full-Polarization Formalism (Matrices!)

- Need dual-polarization basis \((p,q)\) to fully sample the incoming EM wave front, where \(p,q = R,L\) (circular basis) or \(p,q = X,Y\) (linear basis):

\[
\vec{I}_{\text{circ}} = \vec{S}_{\text{circ}} \vec{I}_{\text{Stokes}}
\]

\[
\begin{pmatrix}
RR \\
RL \\
LR \\
LL
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & i & 0 \\
0 & 1 & -i & 0 \\
1 & 0 & 0 & -1
\end{pmatrix} \begin{pmatrix}
I \\
Q \\
U \\
V
\end{pmatrix} = \begin{pmatrix}
I + V \\
Q + iU \\
Q - iU \\
I - V
\end{pmatrix}
\]

\[
\vec{I}_{\text{lin}} = \vec{S}_{\text{lin}} \vec{I}_{\text{Stokes}}
\]

\[
\begin{pmatrix}
XX \\
XY \\
YX \\
YY
\end{pmatrix} \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & i \\
0 & 0 & 1 & -i \\
1 & 1 & 0 & 0
\end{pmatrix} \begin{pmatrix}
I \\
Q \\
U \\
V
\end{pmatrix} = \begin{pmatrix}
I + Q \\
U + iV \\
U - iV \\
I - Q
\end{pmatrix}
\]

- Devices can be built to sample these circular \((R,L)\) or linear \((X,Y)\) basis states in the signal domain (Stokes Vector is defined in “power” domain)

- Some components of \(J_i\) involve mixing of basis states, so dual-polarization matrix description desirable or even required for proper calibration
Full-Polarization Formalism: Signal Domain

• Substitute:

\[s_i \rightarrow \vec{s}_i = \begin{pmatrix} s'^p \\ s'^q \end{pmatrix}_i, \quad J_i \rightarrow \vec{J}_i = \begin{pmatrix} J^{p\rightarrow p} & J^{q\rightarrow p} \\ J^{p\rightarrow q} & J^{q\rightarrow q} \end{pmatrix}_i \]

• The Jones matrix thus corrupts the vector wavefront signal as follows:

\[
\vec{s}'_i = \vec{J}_i \vec{s}_i
\]
\[
\begin{pmatrix} s'^p \\ s'^q \end{pmatrix}_i = \begin{pmatrix} J^{p\rightarrow p} & J^{q\rightarrow p} \\ J^{p\rightarrow q} & J^{q\rightarrow q} \end{pmatrix}_i \begin{pmatrix} s^p \\ s^q \end{pmatrix}_i
\]
\[
= \begin{pmatrix} J^{p\rightarrow p} s^p + J^{q\rightarrow p} s^q \\ J^{p\rightarrow q} s^p + J^{q\rightarrow q} s^q \end{pmatrix}_i
\]
Full-Polarization Formalism: Correlation - I

- Four correlations are possible from two polarizations. The *coherency matrix* represents correlation in the matrix formalism:

\[\vec{V}_{ij}^{\text{true}} = \left\langle \vec{S}_i \cdot \vec{S}_j^* \right
angle = \left\langle \left(\begin{array}{cc} S_i^p & S_i^q \\ S_j^p & S_j^q \end{array} \right) \cdot \left(\begin{array}{cc} S_j^p & S_j^q \\ S_i^p & S_i^q \end{array} \right)^* \right\rangle = \left(\begin{array}{cc} \left\langle S_i^p \cdot S_j^p \right\rangle & \left\langle S_i^p \cdot S_j^q \right\rangle \\ \left\langle S_i^q \cdot S_j^p \right\rangle & \left\langle S_i^q \cdot S_j^q \right\rangle \end{array} \right) \]

- Observed visibilities:

\[\vec{V}_{ij}^{\text{obs}} = \left\langle \vec{S}_i \cdot \vec{S}_j^* \right\rangle = \left\langle \left(\vec{J}_i \vec{S}_i \right) \cdot \left(\vec{J}_j^* \vec{S}_j^* \right)^* \right\rangle = \vec{J}_i \left\langle \vec{S}_i \cdot \vec{S}_j^* \right\rangle \vec{J}_j^* = \vec{J}_i \vec{V}_{ij}^{\text{true}} \vec{J}_j^* \]
Full-Polarization Formalism: Correlation - II

- And finally, for fun, expand the correlation of corrupted signals:

\[
\tilde{V}_{ij}^{\text{obs}} = J_i \langle \tilde{S}_i \cdot \tilde{S}_j^* \rangle J_j^*
\]

\[
= \begin{pmatrix}
J_i^{p \rightarrow p} J_j^{* \rightarrow p} \langle S_i^p \cdot S_j^* \rangle + J_i^{p \rightarrow p} J_j^{q \rightarrow p} \langle S_i^p \cdot S_j^q \rangle + J_i^{p \rightarrow p} J_j^{* \rightarrow q} \langle S_i^p \cdot S_j^* \rangle + J_i^{p \rightarrow p} J_j^{q \rightarrow q} \langle S_i^p \cdot S_j^q \rangle \\
J_i^{q \rightarrow p} J_j^{* \rightarrow p} \langle S_i^q \cdot S_j^* \rangle + J_i^{q \rightarrow p} J_j^{q \rightarrow p} \langle S_i^q \cdot S_j^q \rangle + J_i^{q \rightarrow p} J_j^{* \rightarrow q} \langle S_i^q \cdot S_j^* \rangle + J_i^{q \rightarrow p} J_j^{q \rightarrow q} \langle S_i^q \cdot S_j^q \rangle \\
J_i^{p \rightarrow q} J_j^{* \rightarrow p} \langle S_i^p \cdot S_j^* \rangle + J_i^{p \rightarrow q} J_j^{q \rightarrow p} \langle S_i^p \cdot S_j^q \rangle + J_i^{p \rightarrow q} J_j^{* \rightarrow q} \langle S_i^p \cdot S_j^* \rangle + J_i^{p \rightarrow q} J_j^{q \rightarrow q} \langle S_i^p \cdot S_j^q \rangle \\
J_i^{q \rightarrow q} J_j^{* \rightarrow p} \langle S_i^q \cdot S_j^* \rangle + J_i^{q \rightarrow q} J_j^{q \rightarrow p} \langle S_i^q \cdot S_j^q \rangle + J_i^{q \rightarrow q} J_j^{* \rightarrow q} \langle S_i^q \cdot S_j^* \rangle + J_i^{q \rightarrow q} J_j^{q \rightarrow q} \langle S_i^q \cdot S_j^q \rangle
\end{pmatrix}

- UGLY, but we rarely, if ever, need to worry about algebraic detail at this level—just let this occur “inside” the matrix formalism, and work (think) with the matrix short-hand notation
- Synthesis instrument design driven by minimizing off-diagonal terms in \(J_i \)
The Matrix Measurement Equation

• We can now write down the Measurement Equation in matrix notation:

\[\vec{V}_{ij}^{obs} = \int_{\text{sky}} \left(\vec{J}_i \vec{I}_c (l,m) \vec{J}_j^* \right) e^{-i2\pi(u_{ij}l+v_{ij}m)} \, dl \, dm \]

• \(I_c (l,m) \) is the 2x2 matrix of Stokes parameter combinations corresponding to the coherency matrix of correlations (basis-dependent)

• …and consider how the \(J_i \) are products of many effects.
A Dictionary of Calibration Components

- J_i contains many components, in principle:
 - $F =$ ionospheric effects
 - $T =$ tropospheric effects
 - $P =$ parallactic angle
 - $X =$ linear polarization position angle
 - $E =$ antenna voltage pattern
 - $D =$ polarization leakage
 - $G =$ electronic gain
 - $B =$ bandpass response
 - $K =$ geometric compensation
 - $M, A =$ baseline-based corrections

- Order of terms follows signal path (right to left)
- Each term has matrix form of J_i with terms embodying its particular algebra (on- vs. off-diagonal terms, etc.)
- Direction-dependent terms must stay inside FT integral
- ‘Full’ calibration is traditionally a bootstrapping process wherein relevant terms (usually a minority of above list) are considered in decreasing order of dominance, relying on approximate separability

\[\vec{J}_i = \vec{K}_i \vec{B}_i \vec{G}_i \vec{D}_i \vec{E}_i \vec{X}_i \vec{P} \vec{T}_i \vec{F}_i \]
Ionospheric Effects, F

$$ F^{RL} = e^{i \Delta \phi} \begin{pmatrix} e^{-i \varepsilon} & 0 \\ 0 & e^{i \varepsilon} \end{pmatrix}; \quad F^{XY} = e^{i \Delta \phi} \begin{pmatrix} \cos \varepsilon & \sin \varepsilon \\ -\sin \varepsilon & \cos \varepsilon \end{pmatrix} $$

- The ionosphere introduces a dispersive path-length offset:
 - More important at lower frequencies (<5 GHz)
 - Varies more at solar maximum and at sunrise/sunset, when ionosphere is most active and variable
 - Direction-dependent within wide field-of-view

- The ionosphere is *birefringent*: Faraday rotation:
 - as high as 20 rad/m2 during periods of high solar activity will rotate linear polarization position angle by $\varepsilon = 50$ degrees at 1.4 GHz
 - Varies over the array, and with time as line-of-sight magnetic field and electron density vary, violating the usual assumption of stability in position angle calibration

- Book: Chapter 5, sect. 4.3,4.4,9.3; Chapter 6, sect. 6; Chapter 29, sect.3
 - Michiel Brentjens lecture: “Polarization in Interferometry” (next!)
 - Tracy Clark’s lecture: “Low Frequency Interferometry” (Monday)
Tropospheric Effects, T

$$\tilde{T} = \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} = t \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- The troposphere causes polarization-independent amplitude and phase effects due to emission/opacity and refraction, respectively
 - Up to 2.3m excess path length at zenith compared to vacuum
 - Higher noise contribution, less signal transmission: Lower SNR
 - Most important at $\nu > 20$ GHz where water vapor and oxygen absorb/emit
 - Zenith-angle-dependent (more troposphere path nearer horizon)
 - Clouds, weather = variability in phase and opacity; may vary across array
 - Water vapor radiometry (estimate phase from power measurements)
 - Phase transfer from low to high frequencies (delay calibration)

- Book: Chapter 5: sect. 4.3, 4.4; Chapter 28, sect. 3
- ALMA!
 - Crystal Brogan’s lecture: “Advanced Calibration Techniques” (Thursday)
Parallactic Angle, P

\[
\vec{P}_{RL} = \begin{pmatrix} e^{-i\chi} & 0 \\ 0 & e^{i\chi} \end{pmatrix}; \quad \vec{P}_{XY} = \begin{pmatrix} \cos \chi & \sin \chi \\ -\sin \chi & \cos \chi \end{pmatrix}
\]

- Changing orientation of sky in telescope’s field of view
 - Constant for equatorial telescopes
 - Varies for alt-az-mounted telescopes:

\[
\chi(t) = \arctan \left(\frac{\cos l \sin h(t)}{\sin l \cos \delta - \cos l \sin \delta \cos h(t)} \right)
\]

$l = \text{latitude}, \ h(t) = \text{hour angle}, \ \delta = \text{declination}$

- Rotates the position angle of linearly polarized radiation
- Analytically known, and its variation provides leverage for determining polarization-dependent effects

- Book: Chapter 6, sect. 2.1
- Michiel Brentjens’ lecture: “Polarization in Interferometry” (next!)
Linear Polarization Position Angle, X

$\hat{X}^{RL} = \begin{pmatrix} e^{-i\Delta\chi} & 0 \\ 0 & e^{i\Delta\chi} \end{pmatrix}$; $\hat{X}^{XY} = \begin{pmatrix} \cos \Delta\chi & \sin \Delta\chi \\ -\sin \Delta\chi & \cos \Delta\chi \end{pmatrix}$

- Configuration of optics and electronics (and refant) causes a net linear polarization position angle offset
- Can be treated as an offset to the parallactic angle, P
- Calibrated by registration with a strongly polarized source with known polarization position angle (e.g., flux density calibrators)
- For circular feeds, this is a phase difference between the R and L polarizations, which is frequency-dependent (a R-L phase bandpass)
- For linear feeds, this is the orientation of the dipoles in the frame of the telescope

- Michiel Brentjens’ lecture: “Polarization in Interferometry” (next!)
Antenna Voltage Pattern, E

\[
\tilde{E}^{pq} = \begin{pmatrix}
E^p(l,m) & 0 \\
0 & E^q(l,m)
\end{pmatrix}
\]

- Antennas of all designs have direction-dependent gain within field-of-view
 - Important when region of interest on sky comparable to or larger than λ/D
 - Important at lower frequencies where radio source surface density is greater and wide-field imaging techniques required
- Beam squint: E^p and E^q offset, yielding spurious polarization
- Sky rotates within field-of-view for alt-az antennas, so off-axis sources move through the pattern
- Direction dependence of polarization leakage (D) may be included in E (off-diagonal terms then non-zero)

- Shape and efficiency of the voltage pattern may change with zenith angle: ‘gain curve’

- Book: Chapters 19, 20
 - Steve Myers’ lecture: “Wide Field Imaging I” (Thursday)
 - Brian Mason’s lecture: “Wide Field Imaging II” (Monday)
 - Urvashi Rao Venkata’s lecture: “Wide Bandwidth Imaging” (Monday)
Polarization Leakage, D

- Antenna & polarizer are not ideal, so orthogonal polarizations not perfectly isolated
 - Well-designed feeds have $d \sim$ a few percent or less
 - A geometric property of the optics design, so frequency-dependent
 - For R,L systems, total-intensity imaging affected as $\sim dQ, dU$, so only important at high dynamic range (Q,U,d each \sim few %, typically)
 - For R,L systems, linear polarization imaging affected as $\sim dl$, so almost always important
 - For small arrays (no differential parallactic angle coverage), only relative D solution is possible from standard linearized solution, so parallel-hands cannot be corrected absolutely (closure errors)

- Best calibrator: Strong, point-like, observed over large range of parallactic angle (to separate source polarization from D)

- Book: Chapter 6

- Michiel Brentjens’ lecture: “Polarization in Interferometry” (next!)

\[
\tilde{D} = \begin{pmatrix} 1 & d^p \\ d^q & 1 \end{pmatrix}
\]
“Electronic” Gain, G

\[\hat{G}_{pq} = \begin{pmatrix} g^p & 0 \\ 0 & g^q \end{pmatrix} \]

- Catch-all for most amplitude and phase effects introduced by antenna electronics and other generic effects
 - Most commonly treated calibration component
 - Dominates other effects for most standard observations
 - Includes scaling from engineering (correlation coefficient) to radio astronomy units (Jy), by scaling solution amplitudes according to observations of a flux density calibrator
 - Includes any internal system monitoring, like EVLA switched power calibration
 - Often also includes tropospheric and (on-axis) ionospheric effects which are typically difficult to separate uniquely from the electronic response
 - Excludes frequency dependent effects (see B)
- Best calibrator: strong, point-like, near science target; observed often enough to track expected variations
 - Also observe a flux density standard
- Book: Chapter 5
Bandpass Response, B

$$\vec{B}^{pq} = \begin{pmatrix} b^p(\nu) & 0 \\ 0 & b^q(\nu) \end{pmatrix}$$

- G-like component describing frequency-dependence of antenna electronics, etc.
 - Filters used to select frequency passband not square
 - Optical and electronic reflections introduce ripples across band
 - Often assumed time-independent, but not necessarily so
 - Typically (but not necessarily) normalized
 - ALMA T_{sys} is a “bandpass”

- Best calibrator: strong, point-like; observed long enough to get sufficient per-channel SNR, and often enough to track variations

- Book: Chapter 12, sect. 2
- Mark Lacy’s lecture: “Spectral Line Data Analysis” (today!)
Geometric Compensation, K

- Must get geometry right for Synthesis Fourier Transform relation to work in real time
 - Antenna positions (geodesy)
 - Source directions (time-dependent in topocenter!) (astrometry)
 - Clocks
 - Electronic path-lengths introduce delays (polarization, spw differences)
 - Longer baselines generally have larger relative geometry errors, especially if clocks are independent (VLBI)
 - Importance scales with frequency
- K is a clock- & geometry-parameterized version of G (see chapter 5, section 2.1, equation 5-3 & chapters 22, 23)
 - All-sky observations used to isolate geometry parameters

- Book: Chapter 5, sect. 2.1; Chapters 22, 23
 - Adam Deller’s lecture: “Very Long Baseline Interferometry” (Thursday)
Non-closing Effects: M, A

- Baseline-based errors which do not decompose into antenna-based components
 - Digital correlators designed to limit such effects to well-understood and *uniform* (not dependent on baseline) scaling laws (absorbed in $f.d.$ calibration)
 - Simple noise (additive)
 - Additional errors can result from averaging in time and frequency over variation in antenna-based effects and visibilities (practical instruments are finite!)
 - Instrumental polarization effects in parallel hands
 - Correlated “noise” (e.g., RFI)
 - Difficult to distinguish from source structure (visibility) effects
 - Geodesy and astrometry observers consider determination of radio source structure—a baseline-based effect—as a required *calibration* if antenna positions are to be determined accurately
 - Separate factors for each element of the coherency matrix; M multiplies, A adds
Solving the Measurement Equation

• Formally, solving for any antenna-based visibility calibration component is always the same general non-linear fitting problem:

\[\mathbf{V}_{ij}^{\text{corrected\cdot obs}} = \mathbf{J}_i \mathbf{V}_{ij}^{\text{corrupted\cdot mod}} \mathbf{J}_j^* \]

– Observed and Model visibilities are corrected/corrupted by available prior calibration solutions
– Resulting solution used as prior in subsequent solves, as necessary
– Each solution is relative to priors and assumed source model
– Iterate sequences, as needed \(\rightarrow\) generalized self-calibration

• Viability and accuracy of the overall calibration depends on isolation of different effects using proper calibration observations, and appropriate solving strategies
Measurement Equation Heuristics

• When considering which effects are relevant to a particular observation, and how to sequence calibration determination, it is convenient to express the Measurement Equation in a “Heuristic Operator” notation:

\[V_{obs} = M B G D E X P T F V_{true} + A \]

• Rigorous notation, antenna-basedness, etc., suppressed
• Usually, only a subset of terms are considered, though highest-dynamic range observations may require more
• An expression of a “Calibration Model”
 – Order is important (handled in software)
 – Solve for terms in decreasing order of dominance, iterate to isolate
 – NB: Non-trivial direction-dependent solutions involve convolutional treatment of the visibilities, and is coupled to the imaging and deconvolution process---see advanced imaging lectures….)
Decoupling Calibration Effects

• Multiplicative gain (G) term will soak up many different effects; known priors should be compensated for explicitly, especially when direction-dependent differences (e.g., between calibrator and target) will limit the accuracy of calibration transfer:
 – Zenith angle-dependent atmospheric opacity, phase (T,F)
 – Zenith angle-dependent gain curve (E)
 – Antenna position errors (K)

• Early calibration solves (e.g., G) are always subject to more subtle, uncorrected effects
 – E.g., instrumental polarization (D), which introduces gain calibration errors and causes apparent closure errors in parallel-hand correlations
 – When possible, iterate and alternate solves to decouple effects…
Calibration Heuristics – Spectral Line

Total Intensity Spectral Line (B=bandpass, G=gain):

\[V_{\text{obs}} = B \ G \ V_{\text{true}} \]

1. Preliminary Gain solve on B-calibrator:

\[V_{\text{obs}} = G_B \ V_{\text{mod}} \]

2. Bandpass Solve (using \(G_B \)) on B-calibrator (then discard \(G_B \)):

\[V_{\text{obs}} = B (G_B \ V_{\text{mod}}) \]

3. Gain solve (using inverse of \(B \)) on all calibrators:

\((B' \ V_{\text{obs}}) = G \ V_{\text{mod}} \)

4. Flux Density scaling:

\(G \rightarrow G_f \) (enforce gain consistency)

5. Correct with inverted (primes) solutions:

\[V_{\text{cor}} = G_f' B' \ V_{\text{obs}} \]

6. Image!
Calibration Heuristics – Polarimetry

Polarimetry (B=bandpass, G=gain, D=instr. poln, X=pos. ang., P=parallactic ang.):

\[V_{\text{obs}} = B \cdot G \cdot D \cdot X \cdot P \cdot V_{\text{true}} \]

1. Preliminary Gain solve on B-calibrator:
 \[V_{\text{obs}} = G_B \cdot V_{\text{mod}} \]

2. Bandpass (B) Solve (using \(G_B \)) on B-calibrator (then discard \(G_B \)):
 \[V_{\text{obs}} = B \cdot (G_B \cdot V_{\text{mod}}) \]

3. Gain (G) solve (using parallactic angle \(P \), inverse of \(B \)) on calibrators:
 \[(B' \cdot V_{\text{obs}}) = G \cdot (PV_{\text{mod}}) \]

4. Instrumental Polarization (D) solve (using \(P \), inverse of \(G,B \)) on instrumental polarization calibrator:
 \[(G'B' \cdot V_{\text{obs}}) = D \cdot (P \cdot V_{\text{mod}}) \]
Calibration Heuristics – Polarimetry

5. Polarization position angle solve (using P, inverse of D, G, B) on position angle calibrator:

$$(D' G' B' V^{obs}) = \mathbf{X} (P V^{mod})$$

6. Flux Density scaling:

$$G \rightarrow G_f \quad \text{(enforce gain consistency)}$$

7. Correct with inverted solutions:

$$V^{cor} = P' X' D' G'_f B' V^{obs}$$

8. Image!

- To use external priors, e.g., T (opacity), K (ant. position errors), E (gaincurve), revise step 3 above as:

$$\quad (B' K' V^{obs}) = G (E P T V^{mod})$$

- and carry T, K, and E forward along with G to subsequent steps
New Calibration Challenges (EVLA, ALMA)

- ‘Delay-aware’ gain (self-) calibration
 - Troposphere and Ionosphere introduce time-variable phase effects which are easily parameterized in frequency and should be (c.f. merely sampling the calibration in frequency)

- Frequency-dependent Instrumental Polarization
 - Contribution of geometric optics is wavelength-dependent (standing waves)

- Voltage pattern
 - Frequency-dependence voltage pattern
 - Wide-field accuracy (sidelobes, rotation)
 - Instrumental polarization (incl. frequency-dependence)

- WVR
- RFI mitigation
- Pipeline Heuristics
- Generalized refant algorithms

→ Increased sensitivity: Can implied dynamic range be reached by calibration and imaging techniques?
Summary

• Determining calibration is as important as determining source structure—can’t have one without the other
• Data examination and editing an important part of calibration
• Calibration dominated by antenna-based effects
 – permits efficient, accurate and defensible separation of calibration from astronomical information (satisfies closure)
• Full calibration formalism algebra-rich, but is modular
• Calibration an iterative process, improving various components in turn, as needed
• Point sources are the best calibrators
• Observe calibrators according requirements of calibration components