
Future Array Technology and Design

Fourteenth Synthesis Imaging Workshop

SQUARE KILOMETRE ARRAY

P. Dewdney 2014-05-19

Dave deBoer
Ger de Bruyn
Lisa Harvey-Smith
Justin Jonas
Mark Halpern
Greg Taylor
Steven Tingay

Introduction

- Astronomy is an exploratory science (over many dimensions).
- Science itself requires a multi-wavelength approach.
 - But technical specialisation is also essential.
 - The ideal situation is cross-training and experience:
 - Science, instrumentation and experimentation.
- The purpose of this talk is to illustrate the health of the field by examples
 of imaging arrays at both large and medium scales.
 - Hence the breadth of opportunity.
- There is room in radio astronomy for bright, early and mid-career scientists and engineers who see their future in the field.
 - Pure technology development and application.
 - Engineering.
 - Management.
 - International relations.

Introduction (cont'd)

- New technologies are the "life-blood" of radio astronomy:
 - Awareness of emerging technologies and innovation in other fields.
 - Constant flow and interchanges of people.
 - Innovation feeds off communication and interchange of ideas.
 - Participants do have to be mobile.
 - Assisted by:
 - Availability of demanding new projects.
 - Collaboration, especially international.
 - Involvement of industry.
- Organisation of each section (9 examples):
 - The science
 - questions being addressed,
 - measurements/observations are being planned or in use.
 - The technology
 - novel approaches, calibration schemes, foreground removal or similar.
 - Technical challenges
 - Key technical strategies, enabling technologies, or similar.
 - Status and/or recent result highlights.

SKA

Square Kilometre Array

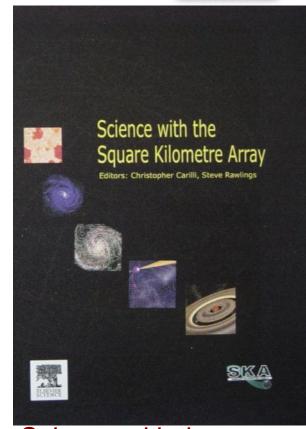
SKA

- More than a project "recently minted" international observatory.
 - The SKA Organisation incorporated in the UK.
 - Headquarters at Jodrell Bank Observatory.
 - 50-60 employees, currently.
 - mandate to build next-generation telescopes in the cm-m wavelength range.
- Emphasis on sensitivity.
- Telescopes to be built in two phases:
 - SKA1 followed by expansion to SKA2.
 - SKA1
 - approx. 10% of SKA2.
 - outlined in the "SKA1 Baseline Design" (www.skatelescope.org).
 - currently consists of three telescopes, to be described.
- Global: Australia, Canada, China, Germany, Italy, New Zealand, South Africa, Sweden, Netherlands, United Kingdom

SKA2 Key Science Drivers

SQUARE KILOMETRE ARRAY

ORIGINS


- Neutral Hydrogen in the Universe from the Epoch of Re-ionisation to now
 - When did the first stars and galaxies form?
 - How did galaxies evolve?
 - Dark Energy, Dark Matter
- Astro-biology

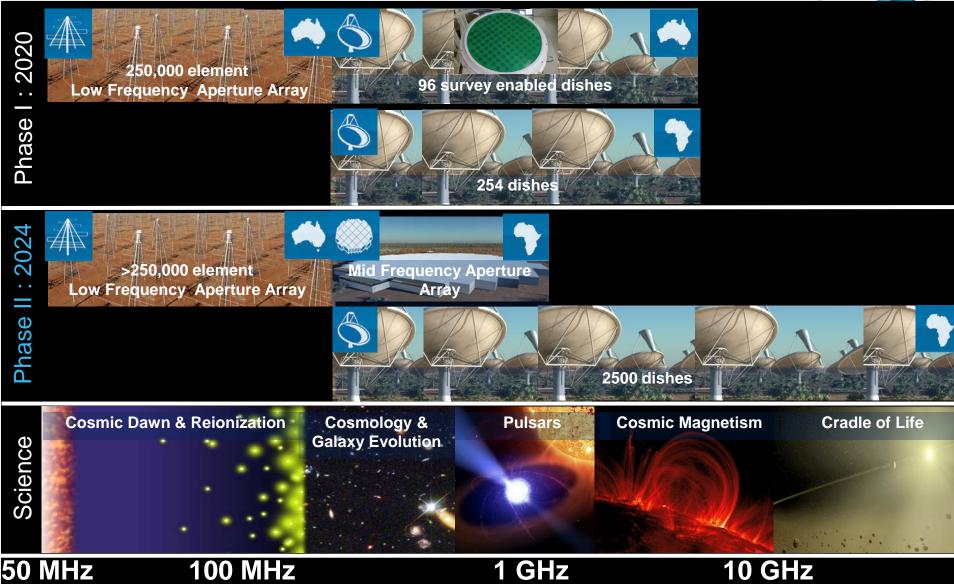
FUNDAMENTAL FORCES

- Pulsars, General Relativity and gravitational waves
- Origin and evolution of cosmic magnetism

EXPLORATION OF THE UNKNOWN

General purpose instruments.

Science with the Square Kilometre Array (2004, eds. C. Carilli & S. Rawlings, New Astron. Rev., 48)


Context: Current & Future Suite of Great Observatories.

Summary of the SKA Baseline Design

SKA1-low

LOCATION: Australia

ANTENNAS: 250,000 Log-periodic dipoles

FREQUENCY: 50 - 350 MHz

SCIENCE includes:

Imaging the Epoch of Reionization (@ 5 arcmin scales with 1mK RMS)

Statistical studies of the Cosmic Dawn

Detections and studies of 'hot jupiter' exoplanets

SKA1-mid

LOCATION: South Africa

ANTENNAS: 190 15-m dishes plus 64 Meerkat 12-m dishes

FREQUENCY: 350 - 13800 MHz (*)

SCIENCE includes:

- Pulsar surveying and timing, to explore Gravitational Wave emission
- Cosmology and Galaxy studies (through HI, Continuum and OH)
- Studies of star formation, proto-planetary disks, cosmic magnetism, transients

SKA1-survey

LOCATION: Australia

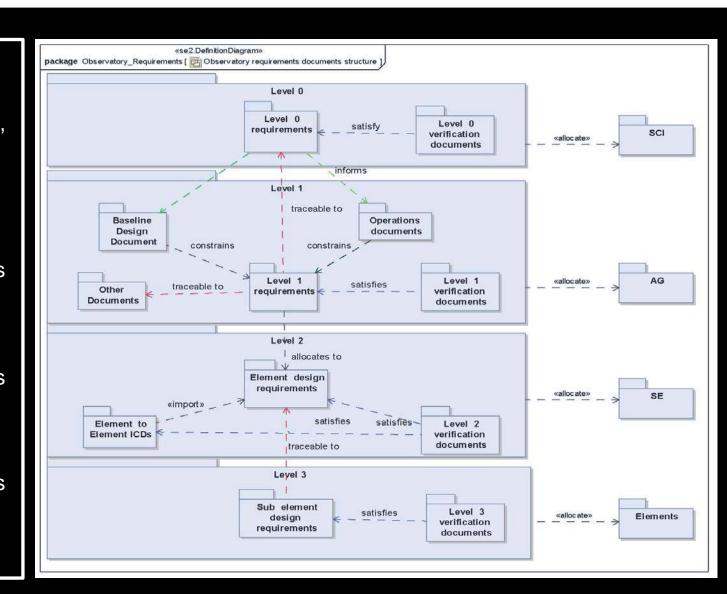
ANTENNAS: 60 15-m dishes plus 36 ASKAP 12-m dishes

FREQUENCY: 350 - 4000 MHz

SCIENCE includes:

- Commensal wide field (~10,000 sq. deg. to all sky) surveys for Galaxy evolution studies and to establish a grid of Rotation Measures (>~300 per sq. deg.)
- Transient searches in image domain

Evolution from Baseline Design



'The Baseline Design' Dewdney et al. 2013

Level 1 Requirements

Level 1 Requirements subject to change control

Level 0 Requirements

SKA Science Working Groups

Science Assessment Workshops

Epoch of Reionisation & the Cosmic Dawn [History of the Universe]

- -Working Group Chair: Leon Koopmans
- -Project Scientist: Jeff Wagg

Cosmology [History of the Universe]

- -Working Group Chair: Roy Maartens
- -Project Scientist: Jeff Wagg

Continuum Science [History of the Universe]

- -Working Group Chairs: Nick Seymour & Isabella Prandoni
- -Project Scientist: Jeff Wagg

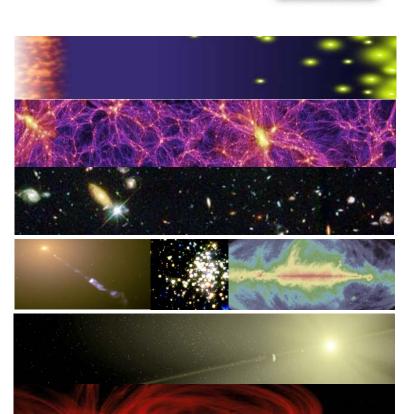
Galaxy Evolution - HI [History of the Universe]

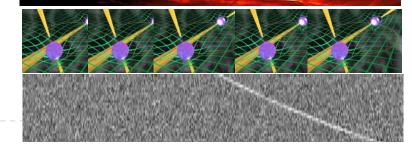
- -Working Group Chairs: Lister Staveley-Smith & Tom Osterloo
- -Project Scientist: Jimi Green

Our Galaxy & The Cradle of Life [History of the Universe]

- -Working Group Chair: Melvin Hoare
- -Project Scientist: Tyler Bourke

Cosmic Magnetism [Fundamental Forces]

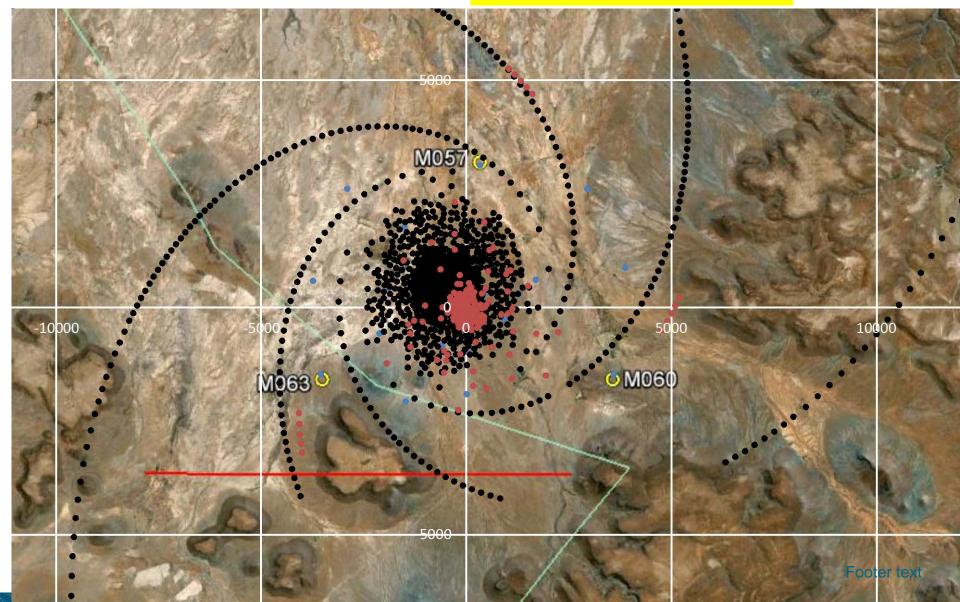

- -Working Group Chairs: Melanie Johnston-Hollitt & Frederica Govoni
- -Project Scientist: Jimi Green


Pulsars & strong field tests of gravity [Fundamental Forces]

- -Working Group Chairs: Ben Stappers & Michael Kramer
- -Project Scientist: Jimi Green

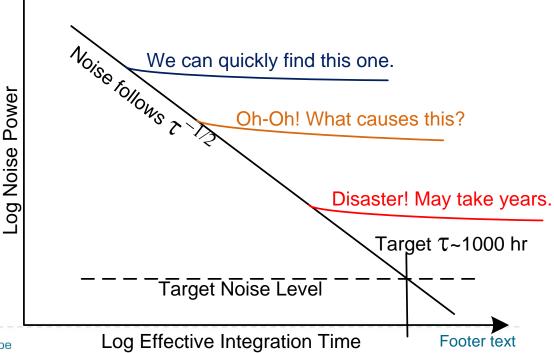
Transients [Unknown Phenomena]

- -Working Group Chair: Rob Fender
- -Project Scientist: Tyler Bourke

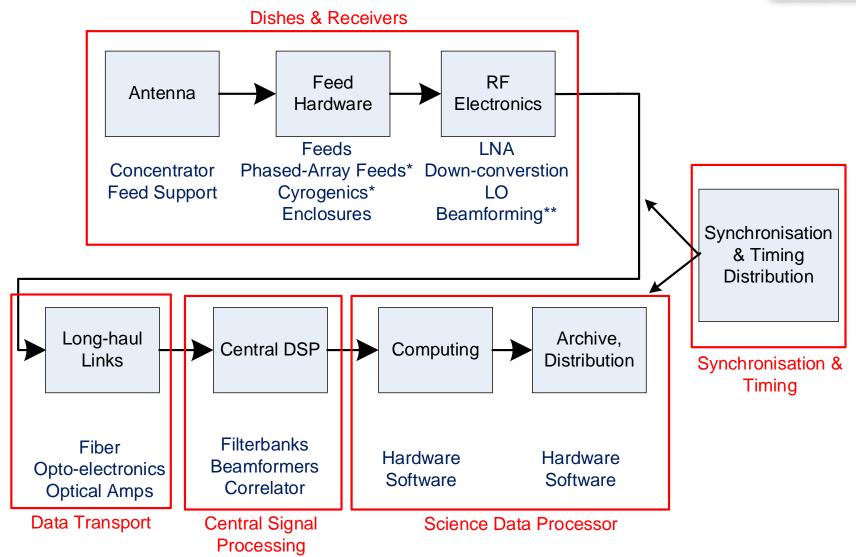


Central SKA2 South Africa Core Site:

Potential Dish Array Transition from SKA1 (red) to SKA2 (blk)

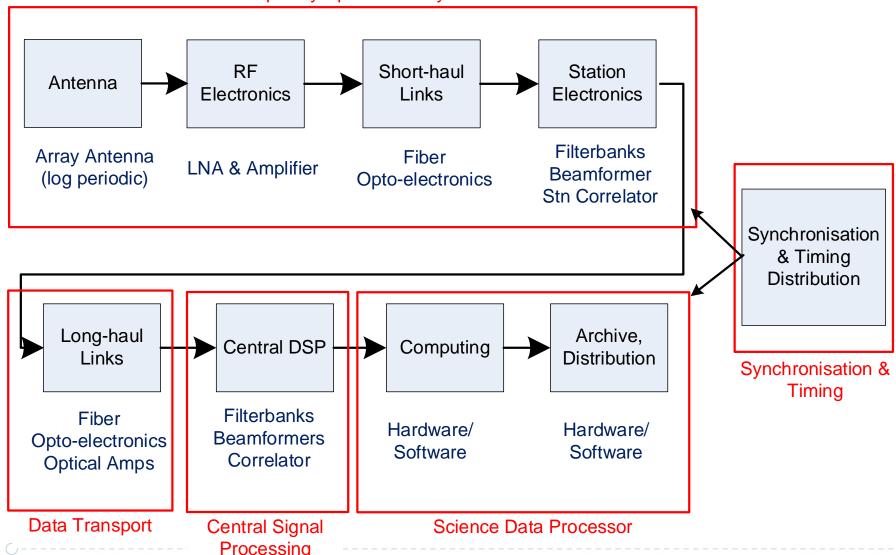

Challenge: Subtle Systematic Errors at High Sensitivity

- With the SKA2, the telescope should be able to reach 10's of nJy in continuum with 1000 hr integration.
 - SKA2 system requirement, not just a receptor requirement.
 - Dish performance is likely to play a limiting, if not dominant role.
- System-level systematic errors must be kept below the noise in the presence of sources ~10^{7.3} times stronger in L-band images.


Applies only after all calibration and algorithmic steps have been taken.

- How to verify???
- Note that the SKA1 system must also be able to integrate for 1000 hr.
 - Separate SKA1 requirement.
- Impact of RFI on systematic effects?

Technology Opportunity Areas – SKA1-mid & Survey



Technology Opportunity Areas – SKA1-low

Low-Frequency Aperture Array Stations

Exploring the Universe with the world's largest radio telescope

DVA1 – SKA Prototype with single-piece composite reflector

- Main reflector: 15 x 18 m diameter.
- rms ~0.89 mm (unweighted)
 - Including damaged sections.
- Sub-reflector and feed platform to be attached early June.

Exploring the Universe with the world's largest radio telescope

- Main reflector attached to mount May 7, 2014.
- Mount developed by U. California (Berkley), and the US TDP program.

ASKAP

Australian SKA Pathfinder

ASKAP: Introduction

What?

• ASKAP is a radio interferometer comprising 36 x 12m dish antennas located at the Australian SKA site. It is the precursor to and technology demonstrator for SKA1 survey.

How?

 Leveraging innovative frontend, backend and dish technologies, ASKAP will be a supremely fast survey telescope between 700-1800 MHz.

Why?

- ASKAP spectral line surveys will allow us to explore the history of gas in galaxies and to detect HI in the Milky Way, HVCs and local group.
- ASKAP continuum surveys will allow us to determine the formation, evolution and population of galaxies and the evolution of cosmic magnetic fields through cosmic time.
- At the same time, ASKAP will explore wide areas of uncharted parameter space through wide-area time domain surveys.

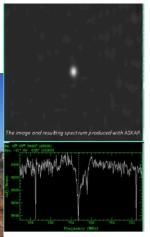
Who?

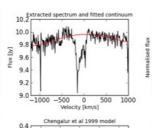
- ASKAP is part of the Australia Telescope National Facility run by CSIRO.
- ASKAP science teams comprise 360 scientists from 130+ institutions. 10 major surveys are planned.
- An Early Science program is planned with 12 antennas. This has distinct science goals from the 10 major surveys.

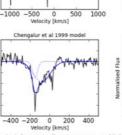
Key Technologies for ASKAP

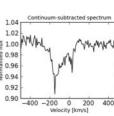
- Phased Array Feed with 36 dual polarisation beams (FoV 30 square degrees).
- 3-axis dish rotation, to fix the orientation of PAF on the sky.
- The Petascale "Pawsey Supercomputing Centre for SKA Science" in Perth.
- Dedicated fast optical fibre link from observatory to supercomputer.
- Fully automated pipelining in near real-time (comparing images every 5 seconds).
- Extremely radio-quiet site, with legal protection.
- Active RFI mitigation (e.g. for satellites) using targeted nulls in the directional response of the PAF.

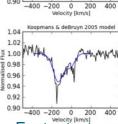
Wide-field surveys require new approaches


- High dynamic range with many bright sources in field will require in-beam calibration using a sky model
- Beam-forming methods will be refined to produce a stable, well-sampled and calibrated field-of-view
- Dish 3rd axis will contribute significantly to beam stability
- Survey strategy designed carefully to enable commensal continuum, transient, spectral line science where possible
- Powerful computers will process Terabytes of data every second through automated pipelines, delivering science data products directly to an archive.
- Science teams will access data from, and contribute valueadded data products to, the ASKAP archive.


Project Description & Current Status

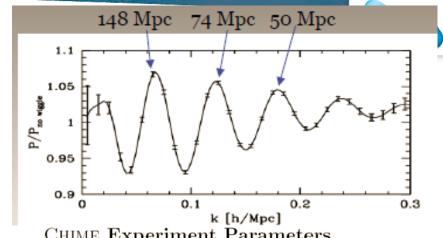



- All 36 telescopes, roads, airstrips, shielded control building, fibre networks and computing facilities are complete.
- ASKAP Commissioning & Early Science Team
 - Currently 12+ members (4 senior staff, 6 postdocs, 2 seconded from Sydney & Curtin Universities, plus additional support from engineering and software & computing teams)
 - Routinely observing commissioning experiments from remote operations centre in Sydney
- BETA 6-antenna test array: Milestones Achieved
 - Continuum image with nine dual-pol beams
 - Spectral line mode demonstrated
 - Other modes being commissioned



CHIME

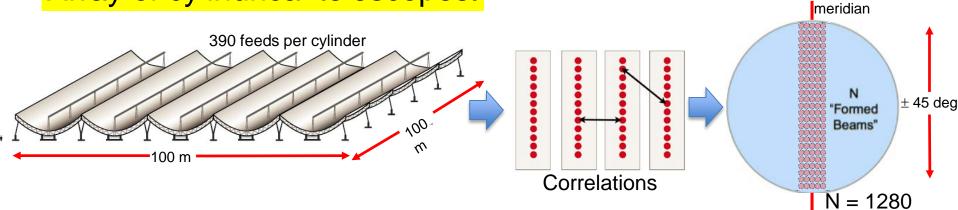
Canadian Hydrogen Intensity Mapping Experiment


CHIME Science Goals

- Goal:
 - to observe baryon acoustic oscillations (BAO) by mapping the 3-D distribution of HI-line emitting gas.
 - BAO is the imprint of density variations at z~1 in the matter distribution of the universe first revealed in the CMB.
 - HI expansion history of the universe over the redshift range 0.7 to 2.5 (400-800 MHz).
 - 200 cubic Gpc with ~10 Mpc resolution.
- BAO angular size will be traced through this key epoch:
 - when cosmic acceleration appears to turn
 - when the Dark Energy driven transition from deceleration to accelerated expansion.
- Also an excellent transient radio source detector and pulsar timing facility.

Technical Strategies

- 400-800MHz band
- 21cm from $z \sim 0.8 2.5$
 - (7-2.6 Gyr)
- Resolution: 1MHz, 13-26'
 - 3rd BAO peak resolved
- Drift scan, no moving parts
 - 20,000 deg² coverage
- 280 Dual-polarization feeds
 - (2560 channels)
- Cosmic-variance-limited survey


CHIME Experiment Parameters

Observing Frequency	800 to 400 MHz
Observing Wavelength	38 to 76 cm
Redshift	$z \approx 0.8 \text{ to } 2.5$
System Noise Temperature	≤ 50K
Beam size	0.26° to 0.53°
Field of View, N-S	52° to 105°
Field of View, E-W	1.3° to 2.5°
Cylinder Size	$100 \mathrm{m} \times 20 \mathrm{m}$
Number of Cylinders	5
Collecting Area	$10,000 \text{ m}^2$
Antenna Spacing	$26~\mathrm{cm}$
Number of Antennae per Cylinder	390
Number of Dual-Polarization Antennae	1950
Number of Antennae Summed before Digitization	2
Number of Digitizers	1950
Bandwidth of Channeled outputs	1 MHz

Design and Technology

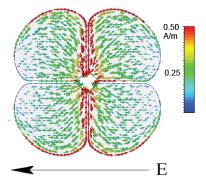
Array of cylindrical telescopes.

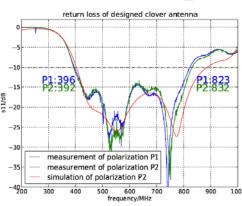
Output: $\sim N^2$ vis in ~ 1024 frequency bands. Raw data: ~ 17 TB/s, compressed: ~ 20 MB/s.

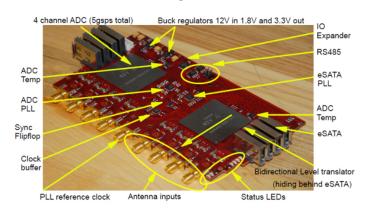
Location of Full Scale Telescope: Now under construction.

Prototype

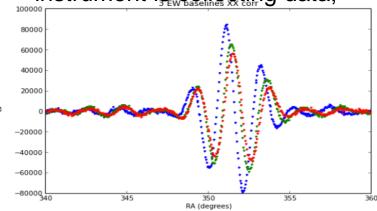
Radio Astronomy – a "Team Sport"



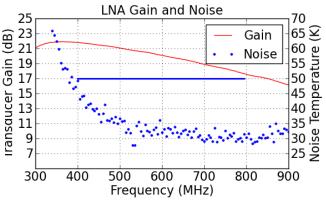

Median age <30.


CHIME Status April 2014

Broad-band feeds designed and built;



GS/s ADCs and custom FPGA correlator designed and built;

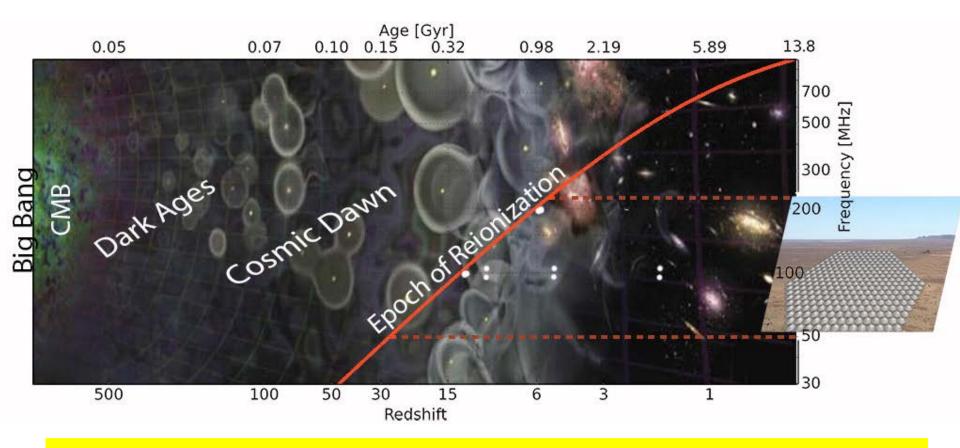

The pathfinder two-cylinder instrument is collecting data;

Low noise amplifiers designed and built;

The full instrument is funded and site preparation has begun.

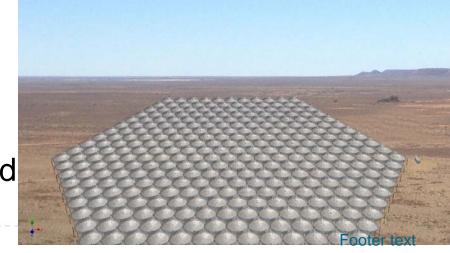
Hydrogen Epoch of Reionization Array

HERA Science



- HERA will detect and characterize the power spectrum of the epoch of reionization (EoR) to try and answer:
 - What objects first lit up the Universe and reionized the neutral IGM?
 - When did this occur in cosmic evolution.
 - How did the process proceed (what heating mechanisms, process feedback, scale-dependence)?
 - How did this lead to the large scale galaxy structure seen today?
- HERA is a focussed experiment, not a general facility.
- HERA is optimized to provide sensitivity on the spectral and spatial scales expected for the EoR signal.
- As a filled array out to about 300 m with 1.2 km outrigger baselines, HERA will also have excellent imaging capability.

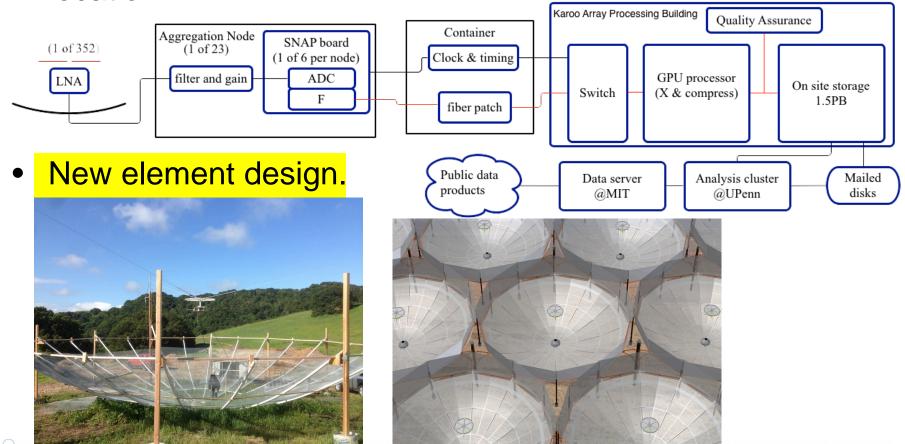
HERA Science



Redshift of EoR defines the frequency range of the telescope.

Enabling Technologies, Technical Strategies

- HERA relies on an optimized design for a focussed strategy of EoR Power Spectrum detection and characterization.
 - Interferometers natively measure the power spectrum: the layout can then be optimized to multiply sample the desired spatial scales.
- HERA uses a 14-meter low-cost fixed zenith antenna.
- Staged build to 352 elements
- HERA is located near the South African SKA site.
- Utilizes CASPER hardware developments (in addition to creating a new CASPER board called "SNAP".


Design and Technology

Exploring the Universe with the world's largest radio telescope

Footer text

- Node architecture, with digitization/F-engine in the field.
- 10 GbE from node to X-engine/processing at central location

SQUARE KILOMETRE ARRAY

Project Description & Current Status

- Design and prototyping well underway.
- Funds for building first antennas on-site.
- Collaboration amongst:
 - Arizona State University
 - Academica Sinica Institute for Astronomy and Astrophysics
 - University of California Berkeley
 - University of California Los Angeles
 - Cavendish Laboratory University of Cambridge
 - University of Kwa-Zulu Natal
 - Massachusetts Institute of Technology
 - National Radio Astronomy Observatory
 - University of Pennsylvania
 - SKA South Africa
 - University of Washington
- Proposals in for full funding.

LOw-Frequency ARray

The LOFAR observatory: overview May 2014

(summary prepared by Ger de Bruyn)

• Frequency coverage: 10-90 MHz (LBA) and 110-250 MHz (HBA)

- See van Haarlem etal, 2013, A&A, 556A, 2V
- 70 phased-array 'stations' with 24, 48 or 96 tiles (HBA) and 96 dipoles (LBA)
- GPU-correlator ('Cobalt'): ~ 350 Gbit/s inputs, ~100 TB/night correlator products
- Multi-beaming: e.g. 8 digital beams of each 12 MHz (fully tunable)
- Pulsar and Fast transients: Tied-array + Fly's eye mode
- Configuration: hierarchy of scales → 70 stations distributed over:
 - Superterp: 0.35 km 6 stations (x2, HBA'S split)
 - Core: 2 km 18 more stations (x2)
 - NL-array: 120 km 14 stations
 - European: 1200 km 8 stations (+4 more in 2015 → 2000 km)

LOFAR key technical and software developments

- Multi-beaming hardware and software
- Sophisticated RFI mitigation software (Offringa etal, 2013)
 (typical RFI losses in both LBA and HBA bands <5%)
- Sophisticated pulsar and fast transients pipeline
- New fast direction-dependent selfcalibration (Kazemi & Yatawatta, SAGEcal)
- Giga-pixel imager, excon (Yatawatta)
- Ionospheric screen fitting (Interna etal, vdTol, Rafferty, Mevius, rapid maturing

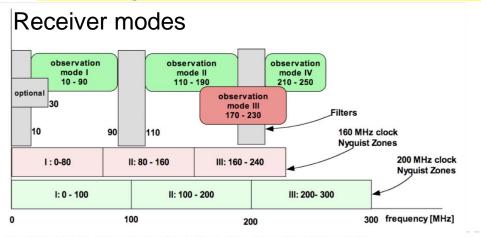
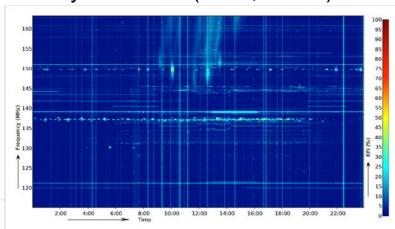



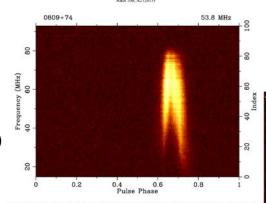
Figure 10 Selection of Nyquist zones is used to select the observed band in the station.

A day in the life (at 1s, 1 kHz)

LOFAR key design features

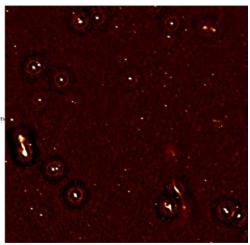
- Salient instrumental specifications
 - Spectral resolution down to <1 kHz (e.g. Carbon recombination lines)
 - Frequency range > octave ! (20-200 MHz)
 - 96 'MHz-beams' on sky
 - Primary (digital) stationbeams (NL-array): HPBW ~ 2° 10°
 - Angular resolution from 1° to 0.2"
 - Sensitivity ~100 μJy (after 8h, 60 MHz in HBA band)
 - Typical observation: 2 beams from 30-78 MHz, 1s, 8h synthesis, or 1 beam from 115-185 MHz, and 6 flanking beams of 4 MHz

Observing modes


- Interferometric, Full Stokes,
- Multi-beaming (all sky in LBA-band, within (20°) tile beam in HBA-band)
- Tied-array (up to 128 beams), Fly's eye mode, ...
- Transient Buffer Boards (few seconds, piggybacking, baseband sampling at 5 ns)

SQUARE KILOMETRE ARRAY

Key Science Programs + some results


Cycle 0 (Dec12-Nov13), Cycle 1 (Nov13-May14) Cycle 2 (May14-Nov14) Open time fraction in Cycle 2: 10% and ramping up

- Calibration/shake-out survey: 20,000 □°: MSSS, finished (Heald etal)
- Epoch of Reionization: ~300h integrations
- Surveys: Dec >0° surveys in LBA and HBA
- Transients: fast or slow
- Pulsars
- Magnetism, polarimetry (RMSF_{HBA}~1 rad/m²)
- Solar science
- Solar system, IPM, Exoplanets, SETI
- Ionospheric science (see AJDI* 7-Mar-2014)

LOW frequency pulsar profiles (Kondratiev etal, see van Haarlem etal)

CR radio flash arrives at superterp: arrival colour-coded Nelles etal, arXiv 1304.097

Deep image of NCP, 115-175 MHz (60 hours, 6" PSF, ~ 40 μJy noise) Yatawatta etal, in preparation

*Astron Jive Daily Image: www. astron.nl/dailyimage, Check out for previews of many early LOFAR results!

Meerkat

"Meer" Karoo Array Telescope

SOUARE KILOMETRE ARRAY

MeerKAT: Science Questions

- Ten large survey projects supported by 360 scientists from 121 institutions in 22 countries:
 - Cosmology and Galaxy evolution: deep (in both flux and brightness) HI surveys (emission and absorption), deep polarization surveys, high-redshift CO surveys.
 - Tests of general relativity: pulsar surveys and timing.
 - Ultra-high energy objects: fast and slow transient surveys.
 - Galactic ultra-compact HII regions: continuum survey, atomic and molecular line surveys.
- New observational parameter space being probed.
 - Similar sensitivity to VLA, ~4x survey speed, high-fidelity imaging (64 antennas, clean and stable primary beam).
 - Multiple tied array beams for pulsar and fast transient surveys.
- SKA Precursor (on site selected for SKA1-mid).

Enabling Technologies, Technical Strategies

- Very compact OMTs (small fraction of volume of VLA equivalents, hence lower cooling requirement).
- Extensive use of computational electromagnetics to optimize Gregorian reflector design.
- Direct sampling of RF signal directly after the LNA no heterodyne stage.
- DSP based on CASPER packet-switched architecture.
- Use of commodity SOIC technology to build compute clusters matched to the needs of interferometric calibration and imaging.
- Use of inexpensive digital storage media (custom designed disk arrays).
- Development of "third generation" calibration and imaging algorithms.
- Use of "traditional" G-M cryogenics optimized for low power and low maintenance.

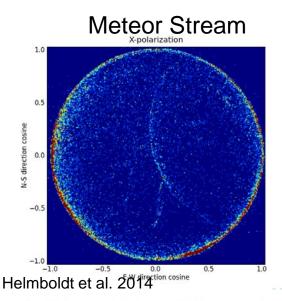
Design and Technology

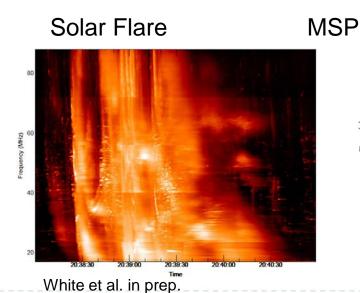
- Medium-size offset Gregorian reflectors (13.5 m).
- G-M cooled single-pixel receivers.
- Direct RF digitization.
- Packet-switched DSP architecture.
- Commodity compute and data storage platforms.
- "3G" calibration and imaging algorithms.
- Technical challenges:
 - Low cost antenna manufacture.
 - Low-power/low-maintenance cryogenics.
 - High performance wideband receivers.
 - Elimination of self-generated RFI.
 - Pulsar search engine requiring large number of tied array beams and massive real-time compute.

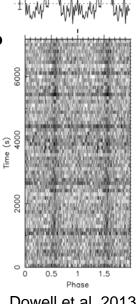
SOUARE KILOMETRE ARRAY

Project Description & Current Status

- Description of the project structure, collaborating institutions, etc.
 - MeerKAT a project of SKA South Africa, a business unit of the National Research Foundation. 100% funded by RSA.
 - MeerKAT Large Surveys supported by 121 institutions worldwide. Some of these institutions are involved in technology development.
 - A substantial human capital development programme is associated with the project, supporting local students and foreign post-docs and visiting scientists.
- Short description of status.
 - All infrastructure elements practically completed (e.g. power, data, buildings, antenna foundations).
 - First antenna erected.
 - Prototype L-band receiver and digitizer delivered, UHF-band this year.
 - Correlator/beamformer, science data processing software and control and monitoring system development all on track.
 - Completion of all 64 antennas with L-band and UHF-band capability 2016/2017.

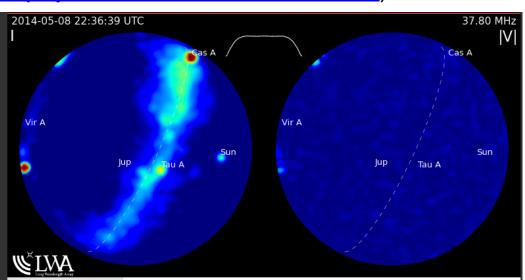

Long Wavelength Array




Science Questions

- The Long Wavelength Array (LWA) will explore the Universe at low frequencies (10-88 MHz), including:
 - Cosmic Explosions (GRBs, Magnetars, Flare Stars, etc..)
 - RRATs, Pulsars, Gravitational Waves
 - Cluster Halos and Relics, and the Cosmic Web
 - Cosmic Dawn through redshifted HI
 - Ionospheric and Space Physics including meteors

Dowell et al. 2013



Enabling Technologies, Technical Strategies

- New Technology realized by First Station (LWA1)
 - Galactic noise dominated low frequency antenna
 - Large N array (33,670 baselines!)
 - Sensitive, all-sky imaging for over 11,000 hours
 - Software development (LWA Software Library)
- Outreach/Science
 - LWA TV (http://www.phys.unm.edu/~lwa/lwatv.html)

Real time view of the sky over LWA1

SSUARE KILOMETRE ARRAY

Design and Technology

- LWA1 is 5 telescopes in one
 - All sky imaging by combining all 260 dipoles with 70 kHz bandwidth
 - 4 independently steerable beams (each 2 tunings of 16 MHz)
 - SEFD ~6 kJy at zenith : S_{min} ~ 5 Jy (5 σ , 1 s, 16 MHz, zenith)

SSUARE KILOMETRE ARRAY

Project Description & Current Status

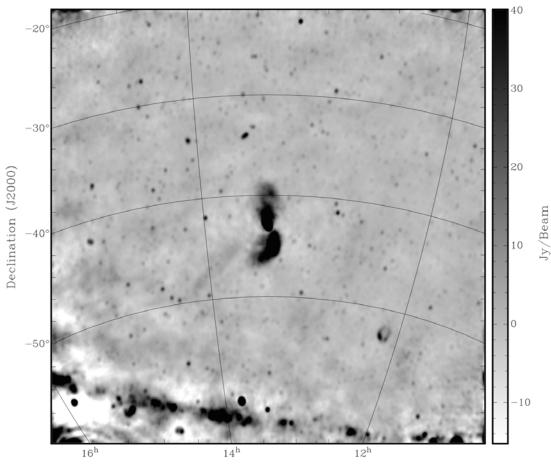
- LWA1 is operated by UNM, VT, NRL
 - Funded by NSF through the University Radio Observatory program.
 - Over 50 projects on going.
 - Users meeting July 10+11 in Albuquerque, new users welcome!
 - Next proposal deadline August 15, 2014 see lwa.unm.edu.
- LWA-OVRO construction completed, now commissioning.
- LWA-Sevilleta under construction, additional funding needed to complete (additional station).
- LWA Future
 - LWA1 demonstrates successful station design, low risk.
 - LWA1 has excellent spectral (100 Hz) and temporal (50 nsec) resolution.
 - Improve spatial resolution to arcsecond level by adding stations.
 - Improve sensitivity to mJy level by adding stations.

MA

Mileura Wide-Field Array

Science Questions

- 1st of the three SKA Precursors to be operational
- Four main science themes:
 - measurement or constraint of the Epoch of Reionisation power spectrum;
 - transients and variables;
 - galactic and extragalactic surveys;
 - solar and heliospheric science.
- The full MWA science case is detailed by Bowman et al. 2013, PASA, 30, 31.
- Detailed MWA system description published by Tingay et al. 2013, PASA, 30, 7.
- System features:
 - 80 300 MHz frequency range, dual polarisation;
 - Extremely wide fields of view (at FWHM): 610 sq. deg. at 150 MHz;
 - Large-N array (128 5mx5m aperture array stations) provides excellent u-v coverage, imaging performance and surface brightness sensitivity;
 - Special features such as a Voltage Capture System for high time resolution science.


SQUARE KILOMETRE ARRAY

Recent Science Highlights

RIGHT: Image of Centaurus A and surrounding field at 118 MHz, from McKinley et al. 2013, MNRAS, 436, 1286.

Other recent highlights:

- Low frequency variable and transient survey: Bell et al. 2013 MNRAS, 438, 352;
- Large-scale polarisation survey: Bernardi et al. 2013, ApJ, 771, 105;
- The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14,121 Compact Radio Sources over 4,300 Square Degrees: Hurley-Walker et al. 2014, PASA, submitted

Right Ascension (J2000)

Enabling Technologies, Technical Strategies

- The MWA takes advantage of advances in a number of dimensions
 - Superb radio-quiet location at the Murchison Radio-astronomy Observatory (MRO), particularly in the FM band;
 - Aperture array technology: no moving parts; simple deployment; simple operations and maintenance;
 - Large-scale GPU-based correlator;
 - Long-haul offsite data transport with dedicated 800 km 10 Gbps link;
 - 9 PB data archive at the \$80m Pawsey supercomputing centre in Perth.
- The MWA itself is critically enabling SKA pre-construction activities for SKA-low, by hosting verification systems for SKA-low technologies.

SBUARE KILOMETRE ARRAY

The enabling technologies provide:

- Benefits:
 - Wide fields of view;
 - Excellent imaging performance;
 - Simple remote operations model;
 - Flexible, software-defined system;

- Maintenance of very high long-haul data rates;
- Very large archived datasets requiring large-scale HPC resources for data processing;
- Wide-field, direction-dependent, time-dependent calibration and imaging, including precision characterisation of primary beam effects;
- Monitor and control of many thousands of instrumental parameters;

Project Description & Current Status

- Construction complete December 2012; Commissioning complete June 2013; Science operations commenced July 2013;
- MWA consortium: 13 institutions from four countries led by Curtin University: Australia; USA; India; and New Zealand.
- Time allocation is under Open Skies policy, with six month semesters and an independent time assignment committee:
 - Details at http://www.mwatelescope.org
 - As of May 2014: 14 refereed papers published; six submitted; four in collaboration review; and 16 in preparation;
 - Operations funding secured through 2015;
 - Extension/upgrade planning currently underway. Double collecting area and double maximum baseline length?
- Close connection with SKA-low development via funded pre-construction activities. \$A5m in funding to Curtin University to leverage MWA lessons for Low Frequency Aperture Array and Central Signal Processing SKA preconstruction work packages.

Footer text

PAPER

Precision Array Probing the Epoch of Reionization

PAPER

- PAPER seeks to detect the power spectrum of the epoch of reionization (EoR) to constrain:
 - What objects first lit up the Universe and reionized the neutral IGM?
 - When did this occur in cosmic evolution
 - How did the process proceed (what heating mechanisms, process feedback, scale-dependence)?
 - How did this lead to the large scale galaxy structure seen today?
- PAPER is a focussed experiment, not a general facility
- PAPER is optimized to provide sensitivity on the spectral and spatial scales expected for the EoR signal
- PAPER dipoles are movable to trial different configurations.
- PAPER+US-MWA teams transitioning to HERA.

Current Status

Collaboration among:

UC Berkeley

UPenn

NRAO

SKA-SA

U KwaZulu Natal

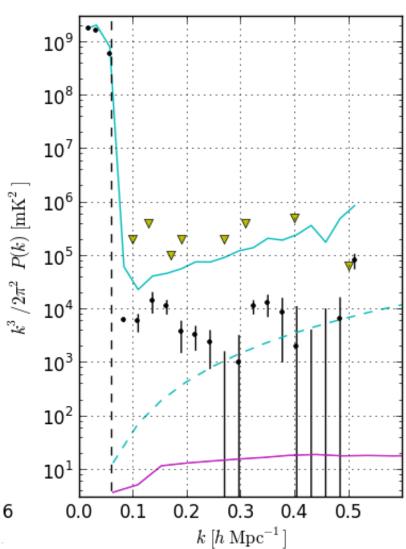
PAPER-32 (2011)

- Observed 92 days
- -80 dB (mK²) suppression of foregrounds

PAPER-64 (2012)

 Observed 172 days uninterrupted

PAPER-128 (2013)


 observing now for second season

SQUARE KILOMETRE ARRAY

Current State of EOR measurements

- PAPER-32 deployment, 92 days, 164
 MHz (z=7.7)
- Black dots show final limit with 2σ error bars
- Magenta is fiducial model from Lidz et al. (2008)
- 9 orders of magnitude (in mK²) of foreground suppression
- Upper limit: (41 mK)², see Parsons et al. (2013)

#