

Cross correlators

for radio astronomy

Adam Deller May 12, 2014

AST(RON

Correlators and Interferometry

Sky brightness

Visibilities (real component shown)

Why care about correlators?

- 1. One day you want to be a radio interferometry guru
- To help you propose the right observations and identify problems in data or images

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a separate complex correlator

AST(RON

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a separate complex correlator

AST(RON

The output

AST(RON

The output

AST(RON

Making it feasible

• Analog filters are costly & unstable; expensive and poor performance

AST(RON

Making it feasible

- Analog filters are costly & unstable; expensive and poor performance
- Fortunately, we can (and do) digitize the signal – meaning we can use a digital substitute: digital filterbank

AST(RON

The advantage of going digital

- Stable, cheap filters
- Produces complex output: use a 1 complex multiplier rather than 2 real multipliers and a phase shift

/2 CC <u>2i</u> si

X

Animation from http://en.wikipedia.org/wiki/File:Unfasor.gif

May 12 2014, Fourteenth Synthesis Imaging Workshop, NRAO Socorro

 $e^{i\phi} = \cos \phi + i \sin \phi$

The "FX" correlator

The "FX" correlator

AST(RON

The "FX" correlator

 Since this architecture consists of a <u>Fourier</u> transform (F) followed by <u>cross</u>-multiplication (X), we dub this the "FX" correlator

Х

But first, we must compensate

AST(RON

AST(RON

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies $\geq 1 / (2 \Delta t) Hz$ (*band-limited*)

Sampling

X

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies $\geq 1 / (2 \Delta t) Hz$ (*band-limited*)

Sampling

X

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies $\geq 1 / (2 \Delta t) Hz$ (*band-limited*)

• When correlation is low (almost always) even very coarse quantization is ok!

Sensitivity loss:

AST(RON

• When correlation is low (almost always) even very coarse quantization is ok!

AST(RON

• When correlation is low (almost always) even very coarse quantization is ok!

AST(RON

Х

Quantization

• When correlation is low (almost always) even very coarse quantization is ok!

• When correlation is low (almost always) even very coarse quantization is ok!

Sensitivity loss: 8 bit: 0.1% 4 bit: 1.3% 2 bit: 12% 1 bit: 36%

Correct visibility amplitudes for this sensitivity loss (done after correlation, exact correction depends on correlation level)

• Sampling prevents perfect alignment of datastreams; always a small error

AST(RON

 Sampling prevents perfect alignment of datastreams; always a small error

• Sampling prevents perfect alignment of datastreams; always a small error

AST(RON

• Sampling prevents perfect alignment of datastreams; always a small error

AST(RON

X

Fringe rotation

Downconversion

Signal at baseband ~0 Hz

AST(RON

Fringe rotation

- Implementation: rotate phase using complex multiplier
- $\Delta \phi = 2\pi v_0 \tau_g$ $v_0 = sky$ frequency, $\tau_g = applied delay$
- Most accurate: apply to voltages directly (time domain)
 - if τ_g is changing slowly (short baseline length), approximate as constant for short time, apply after FFT (frequency domain)

AST<mark>(</mark>RON

Alternate implementation

- We have shown how to build a practical FX correlator, which first Fourier transforms and then multiplies
- Convolution theorem: Multiplication in the frequency domain is equivalent to convolution in the time domain
- It is mathematically equivalent to convolve the two signals in the time domain and then Fourier transform

AST<mark>(</mark>RON

A realistic XF correlator

A realistic XF correlator

XF vs FX

• Different windowing in time domain gives different spectral response

AST(RON

XF vs FX: which is better?

- Advantages and disadvantages to both
 - FX many fewer operations overall
 - XF can make use of very efficient lowprecision integer multipliers up-front
 - FX: access to frequency domain at short timescale allows neat tricks and higher precision correction of delay effects
 - But issues with simple implementation of FX for very high spectral resolution

AST(RON

Correlators on CPUs

- Many positive points:
 - Can implement in "normal" code (e.g., C++); maintainable, many skilled coders
 - Development effort transferrable across generations of hardware
 - Incremental development is trivial
 - Natively good at floating point (good for FX), no cost to do high precision
- One major disadvantage:
 - CPUs not optimised for correlation; big system like JVLA would take **many** CPUs.

Correlators on CPUs

X

Correlators on GPUs

Like CPUs, GPUs are mounted on a standard motherboard

AST(RON

Correlators on GPUs

- Advantages:
 - More powerful and more efficient than CPUs
 - Also good at floating point
- Disadvantages:
 - Writing code is more difficult (GPUs are more specialized, less flexible: need to carefully manage data transfers)
 - Fewer trained GPU programmers available
 - Transfer-ability of code across hardware generations not yet reliable (but close)

Correlators on GPUs

The Low Frequency Array (LOFAR), 70 stations

AST(RON

Correlators on FPGAs

AST(RON

Correlators on FPGAs

- Advantages:
 - More efficient than CPUs or GPUs, particularly for integer multiplication
- Disadvantages:
 - Programming is harder again (especially debugging), yet fewer trained people
 - Transfer-ability across hardware generations even more limited
 - Synchronous (clocked) system, less robust to perturbations c.f. CPUs/GPUs

Correlators on FPGAs

"Roach" reconfigurable FPGA board used for correlation

The Precision Array to Probe the Epoch of Reionization (PAPER), 128 stations

Χ

Correlators on ASICs

As with FPGAs, ASICs are mounted on boards

Correlators on ASICs

- Advantages:
 - Highest possible efficiency, low per-unit cost
- Disadvantages:
 - Highest development cost (time and manufacturing setup)
 - Specialized knowledge required
 - Can't be changed / very difficult to upgrade during lifetime

Х

Correlators on ASICs

The Westerbork Synthesis Radio Telescope, Netherlands

The Very Large Array, New Mexico

Correlator platform overview

AST(RON

AST(RON

Trends in correlator design

- Now: Small scale systems completely dominated by CPU, medium-scale being taken over by "custom GPU"
- Soon: GPUs become more CPU-like; "prepackaged" GPU systems available
- 5+ years: the mother of all correlators (Square Kilometre Array) must be built: will have to be highly optimized

AST(RON