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Why care about correlators? 

1. One day you want to be a radio 
interferometry guru 

2. To help you propose the right 
observations and identify problems in 
data or images 
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A “dumb” correlator 

• Use many analog filters to make many 
narrow channels; correlate each one 
separately with a separate complex 
correlator 
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The output 
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Making it feasible 

• Analog filters are costly & unstable; 
expensive and poor performance 
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Making it feasible 

• Analog filters are costly & unstable; 
expensive and poor performance 

• Fortunately, we can (and do) digitize 
the signal – meaning we can use a 
digital substitute: digital filterbank 
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The advantage of going digital 

• Stable, cheap filters 

• Produces complex 
output: use a 1 
complex multiplier 
rather than 2 real 
multipliers and a 
phase shift 

eif = cos f + i sin f 

cos f = (eif + e-if)/2 

sin f = (eif - e-if)/2i 

Animation from http://en.wikipedia.org/wiki/File:Unfasor.gif  
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The “FX” correlator 
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The “FX” correlator 

• Since this architecture consists of a 
Fourier transform (F) followed by  
cross-multiplication (X), we dub this  
the “FX” correlator 
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But first, we must compensate 

Visibilities 

Wave -> voltage Wave -> voltage 

Downconversion Downconversion 
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Quantization 
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Sampling 

• Nyquist-Shannon sampling theorem: 

– real-valued signal is sampled every Δt sec 

– Original signal can be reconstructed 
perfectly so long as contains no power at 
frequencies ≥ 1 / (2 Δt) Hz (band-limited) 

Adequately sampled 

 

Undersampled,  

cannot be 

reconstructed 
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Quantization 

• When correlation is low (almost always) 
even very coarse quantization is ok! 

Sensitivity loss: 
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Quantization 

• When correlation is low (almost always) 
even very coarse quantization is ok! 

Sensitivity loss: 

8 bit: 0.1% 

4 bit: 1.3% 

2 bit: 12% 

1 bit: 36% 

Correct visibility amplitudes  

for this sensitivity loss (done 

after correlation, exact  

correction depends on  

correlation level) 
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Delay compensation 

• Delay to the nearest  
sample is easy: 
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Delay compensation 

• In practise, delay all to 
common reference 
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Fractional-sample correction 

• Sampling prevents perfect alignment of 
datastreams; always a small error 
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Fractional-sample correction 

• Sampling prevents perfect alignment of 
datastreams; always a small error 

t 
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Fringe rotation 

• Implementation: rotate phase using 
complex multiplier 

• Δf = 2p n0 tg   n0 = sky frequency,  
                     tg = applied delay 

• Most accurate: apply to voltages 
directly (time domain) 

– if tg is changing slowly (short baseline 
length), approximate as constant for short 
time, apply after FFT (frequency domain) 
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Alternate implementation 

• We have shown how to build a practical 
FX correlator, which first Fourier 
transforms and then multiplies 

• Convolution theorem: Multiplication in 
the frequency domain is equivalent to 
convolution in the time domain 

• It is mathematically equivalent to 
convolve the two signals in the time 
domain and then Fourier transform 
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frequency 

visibility 

amplitude 

An equivalent “XF” correlator 
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A realistic XF correlator 
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XF vs FX 

• Different windowing in time domain 
gives different spectral response 

XF 

FX 
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Lag weighting 

22% sidelobes! Reduce  

with Hanning smoothing 

5% sidelobes 
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XF vs FX: which is better? 

• Advantages and disadvantages to both 

– FX many fewer operations overall 

– XF can make use of very efficient low-
precision integer multipliers up-front 

– FX: access to frequency domain at short 
timescale allows neat tricks and higher 
precision correction of delay effects 

– But issues with simple implementation of  
FX for very high spectral resolution 
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Correlator platforms 

      … 
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Correlators on CPUs 

• Many positive points: 

– Can implement in “normal” code (e.g.,  
C++); maintainable, many skilled coders 

– Development effort transferrable across 
generations of hardware 

– Incremental development is trivial 

– Natively good at floating point (good for 
FX), no cost to do high precision 

• One major disadvantage: 

– CPUs not optimised for correlation; big 
system like JVLA would take many CPUs. 
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Correlators on CPUs 

GMRT, India, 30 stations 

The  

European 

VLBI 

Network, 

~20 stations 

The Long 

Baseline 

Array, 

Australia, 

~6 stations 

The Very 

Long 

Baseline 

Array, 

10 stations 
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Correlators on GPUs 

Like CPUs, GPUs are mounted 

on a standard motherboard 
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Correlators on GPUs 

• Advantages: 

– More powerful and more efficient than CPUs 

– Also good at floating point 

• Disadvantages: 

– Writing code is more difficult (GPUs are 
more specialized, less flexible: need to 
carefully manage data transfers) 

– Fewer trained GPU programmers available 

– Transfer-ability of code across hardware 
generations not yet reliable (but close) 
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Correlators on GPUs 

The Low Frequency Array (LOFAR), 70 stations 
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Correlators on FPGAs 
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Correlators on FPGAs 

• Advantages: 

– More efficient than CPUs or GPUs, 
particularly for integer multiplication 

• Disadvantages: 

– Programming is harder again (especially 
debugging), yet fewer trained people 

– Transfer-ability across hardware 
generations even more limited 

– Synchronous (clocked) system, less robust 
to perturbations c.f. CPUs/GPUs 
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Correlators on FPGAs 

The Precision Array to Probe the Epoch  

of Reionization (PAPER), 128 stations 

“Roach” reconfigurable 

FPGA board used for 

correlation 
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Correlators on ASICs 

As with FPGAs, ASICs are mounted on boards 
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Correlators on ASICs 

• Advantages: 

– Highest possible efficiency, low per-unit 
cost 

• Disadvantages: 

– Highest development cost (time and 
manufacturing setup) 

– Specialized knowledge required 

– Can’t be changed / very difficult to upgrade 
during lifetime 
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Correlators on ASICs 

The Westerbork Synthesis 

Radio Telescope, Netherlands 

The Very Large Array, 

New Mexico 
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Correlator platform overview 

Correlator  

capacity per  

hardware $$ 

Development effort required 

GPU 

CPU 

FPGA 

Reuse- 

ability 

ASIC 
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Questions? 
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Trends in correlator design 

• Now: Small scale systems completely 
dominated by CPU, medium-scale being 
taken over by “custom GPU” 

• Soon: GPUs become more CPU-like; 
“prepackaged” GPU systems available 

• 5+ years: the mother of all correlators 
(Square Kilometre Array) must be built: 
will have to be highly optimized 


