

EventHorizonTelescope

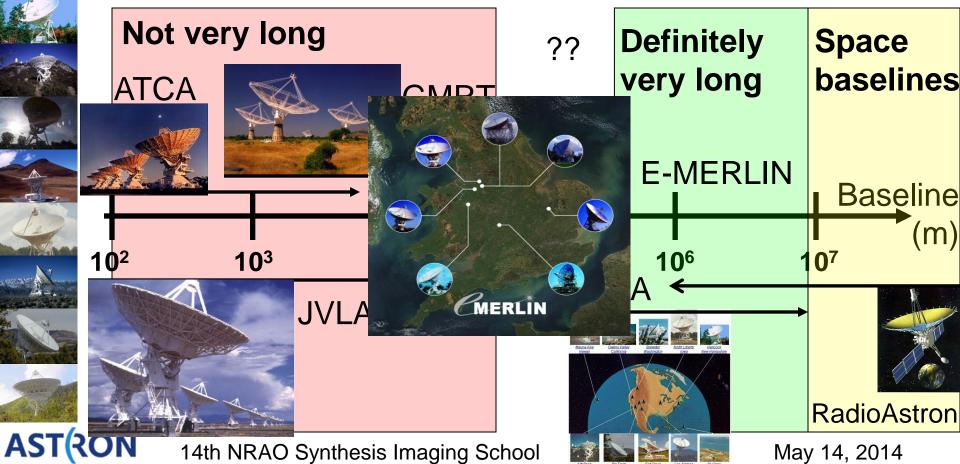
Very Long Baseline Interferometry

Adam Deller

14th NRAO Synthesis Imaging Workshop

- What is VLBI and what does it give you?
- Science applications of VLBI
- A closer look at the differences with regular interferometry and how they have gotten smaller
- How to"do" VLBI: scheduling and data reduction
- New capabilities & the future of VLBI

AST(ROM


NRAC

14th NRAO Synthesis Imaging School

VLBI in context

How long is "Very Long"?

VLBI in context

- Clearly not just about baseline length...
- What constitutes VLBI is actually a little hard to pin down (its more like a "syndrome" than a "disease"!)

Reason: no fundamental differece between VLBI and regular interferometry - only technology, convenience and convention

One accurate (but not useful) distinction: independent antenna electronics; i.e., anything that's not "connected element"

AST(ROP

What VLBI gives you

- Fundamentals of interferometry say: resolution will be <u>very</u> high:
 - □ At 1.4 GHz (21cm), an array of maximum baseline 8,000 km will have a resolution of $1.22\lambda/D \sim = 7$ milli-arcseconds!
 - □ At 43 GHz (7 mm), the same array will have a resolution of 200 microarcseconds!
- The collecting area can also be very large so point source sensitivity can be excellent (think Arecibo + GBT + ...)

NRAC

AST(RON

... but there's always a catch

- The curse of resolution; if the object is larger than your synthesized beam, emission from different regions will interfere destructively and the source will be "resolved out"
- The surface brightness sensitivity is very low (array filling factor is low)

NRAO

AST(R

14th NRAO Synthesis Imaging

May 14, 2014

Source

Science applications of VLBI

- VLBI provides a tool to study mas-level structure in radio sources - what sources are this compact?
 - □ Active Galactic Nuclei (AGN)
 - □ Pulsars
 - □ Masers
 - □ Supernova remnants
 - □ Magnetically active stars

AST<mark>(</mark>RON

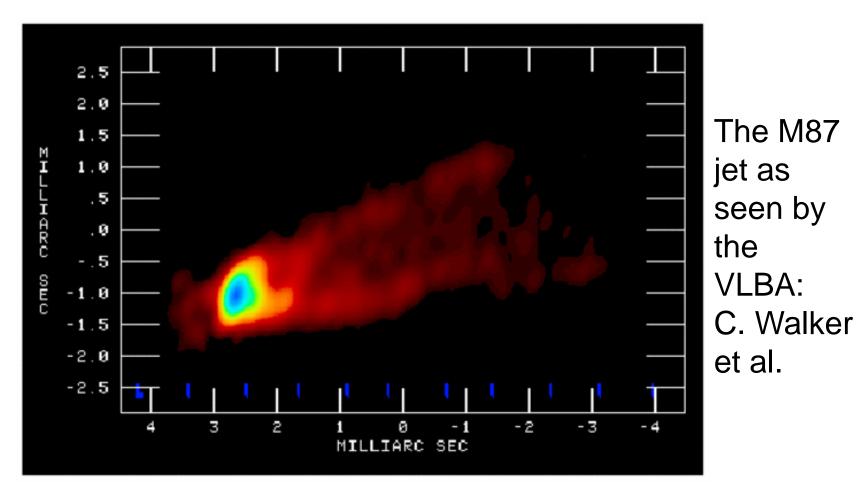
Science applications of VLBI

- For these sources, we typically want one of four things:
 - □ Compact flux? [Is anything there at all?]
 - Determine (very) small scale structure
 [e.g., what do the base of jets in AGN look
 like, how do supernova remnants evolve?]
 - □ Their precise location, to obtain source kinematics or distance [astrometry]
 - A "test source" to model the propagation through the ISM/atmosphere/ionosphere or the location of the receiving telescopes [geodesy]

NRA(

Hallo? Any (compact) body there?

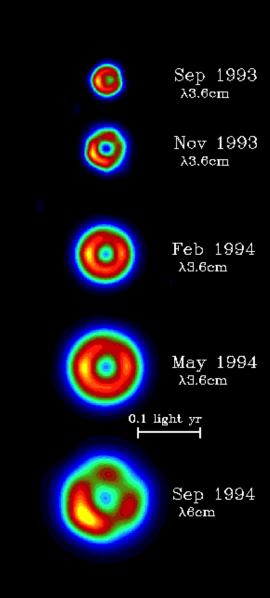
- A VLBI detection instantly identifies a compact non-thermal source
- In the local Universe, that might be a supernova [remnant], pulsar, shock...
- If the source is more distant, it must be a (radio loud) AGN
- VLBI can make a positive ID / discriminate between source classes


NRAC

AST(RON

AST(RON

High resolution imaging



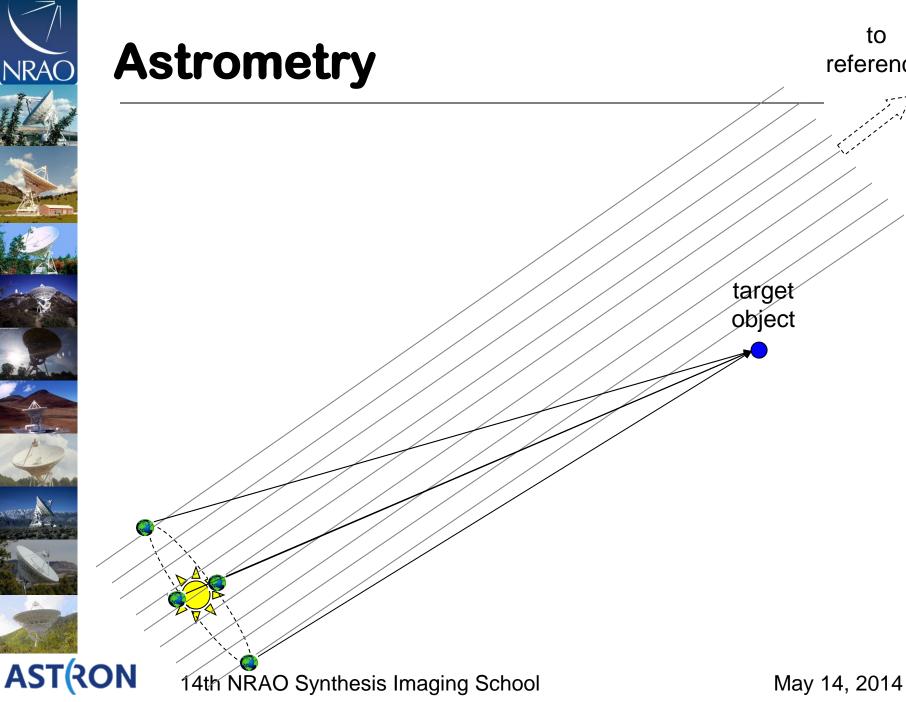
14th NRAO Synthesis Imaging School

AST(RO

High resolution imaging

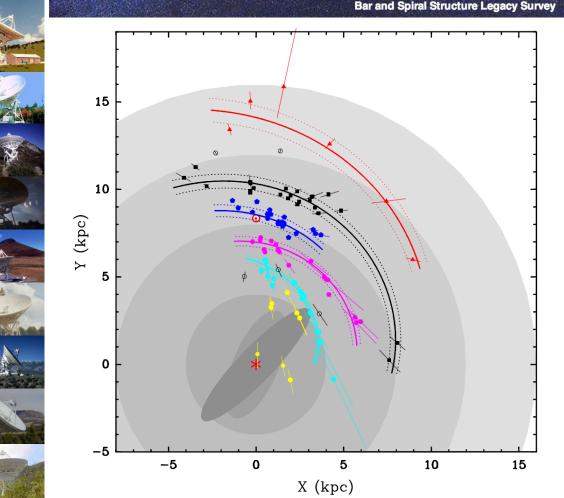
The expansion of SN1993J: Global VLBI observations, J. Marcaide et al.

School



Astrometry

- With VLBI we can centroid an object's location to the ~0.01 mas level
- Ideally unchanging point sources!
- Can be relative or absolute: VLBA in particular has excelled in relative astrometry recently
- Proper motions and parallaxes of objects across the Galaxy can be discerned


to

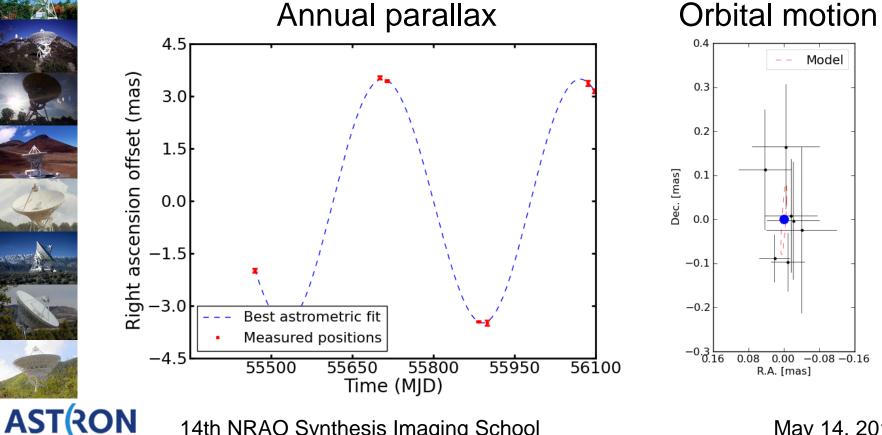
reference

NRAO

AST(RON

>100 parallax distances to masers around high-mass star forming regions:

- Spiral arm structure
- Distance to Galactic Center
- Galactic rotation curve


14th NRAO Synthesis Imaging School

Astrometry highlights

14th NRAO Synthesis Imaging School

■ Distance to PSR J2222-0137 at 0.4% precision; can even see binary motion

If you know the location of a source very precisely (e.g. an ICRF source) then any misalignment of the signal at two antennas must Source come from Antenna positions unmodeled (modeled) propagation effects or antenna position Atmosphere, errors lonosphere (modeled)

May 14, 2014

If you know the location of a source very precisely (e.g. an ICRF source) then any misalignment of the signal at two antennas must Source come from Antenna positions unmodeled (actual) propagation effects or antenna position Atmosphere, errors lonosphere (modeled)

May 14, 2014

If you know the location of a source very precisely (e.g. an ICRF source) then any misalignment of the signal at two antennas must Source come from Antenna positions unmodeled (actual) propagation effects or antenna position Atmosphere, errors lonosphere (modeled)

May 14, 2014

If you know the location of a source very precisely (e.g. an ICRF source) then any misalignment of the signal at two antennas must Source come from Antenna positions unmodeled (modeled) propagation effects or antenna position Atmosphere, errors lonosphere (actual)

May 14, 2014

Geodetic results

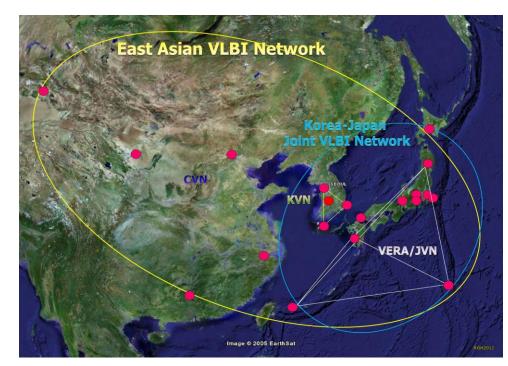
- Global geodesy measures the Earth's rotation phase (UT1-UTC) to a precision of ~4 microseconds every day
- The VLBA station positions are known to a precision of several mm
- After the 2010 earthquake in Chile, the position of the Concepcion antenna was measured to have moved by ~2m

The Very Long Baseline Array (VLBA)

- 10 x 25m antennas
- 0.3 86 GHz
- maximum baseline ~8,000 km
- full time operation
- add GBT, VLA, Arecibo for "High Sensitivity Array"

The European VLBI Network (EVN)

- 18 antennas, 10m -> 100m
- 0.3 86 GHz
- maximum baseline ~8,000 km
- operates ~3 months/year


The Long Baseline Array (LBA)

- 6 antennas, 22m -> 70m
- 1.3 22 GHz
- maximum baseline
 ~1,700 km
- operates ~3 weeks/year
- only Southern Hemisphere instrument

East Asian VLBI Network is a collaboration of 3 separate networks:

KVN: Korea, 4 dishes, 22 – 129 GHz VERA: Japan, focus on astrometry, 2 – 43 GHz CVN: China, includes some larger dishes First open call in 2015?

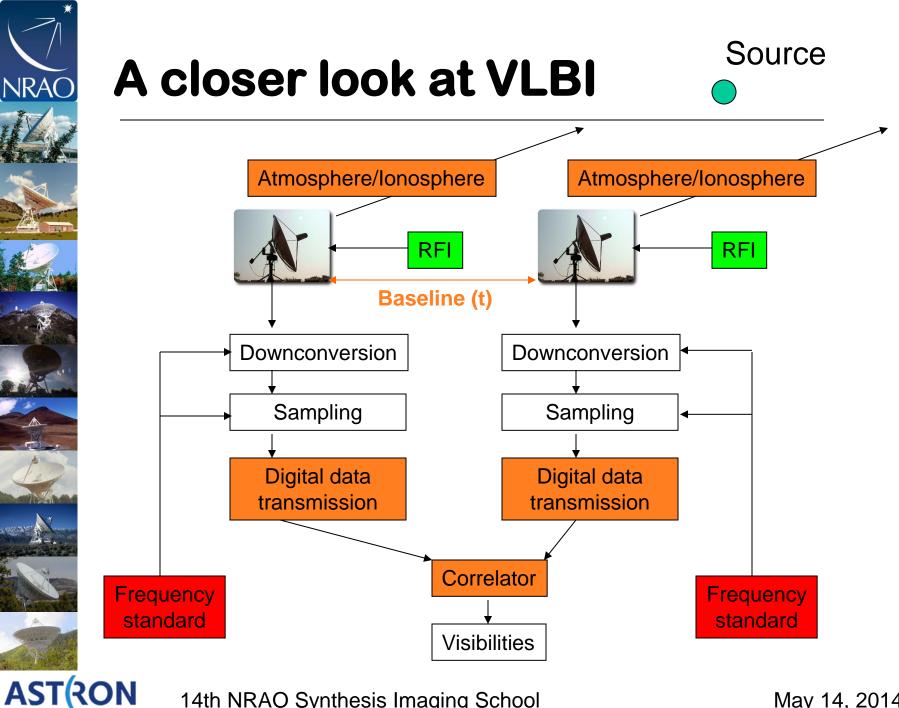
LOFAR: Sub-arcsecond imaging at metre wavelengths

8 international stations now, 4 more coming (plus core and 15 more stations in Netherlands).

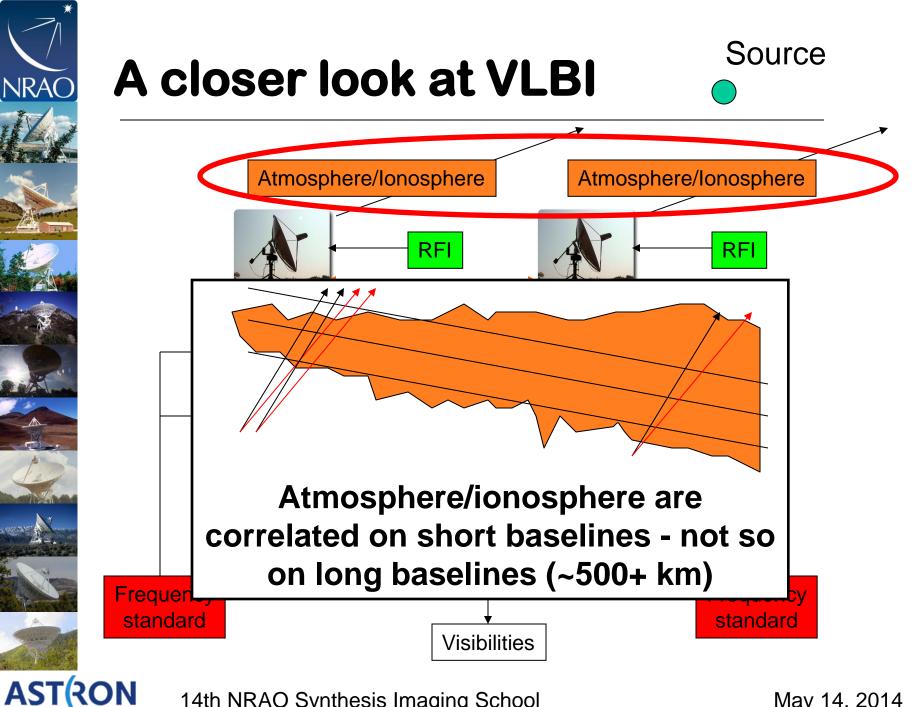
15 – 240 MHz, full time (open time available)

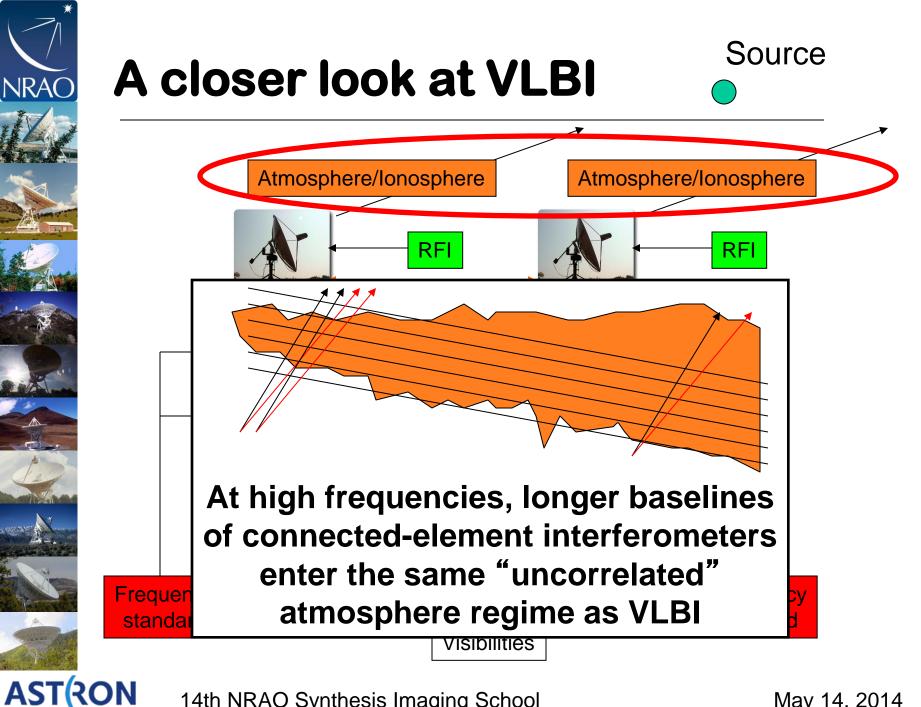
Event Horizon Telescope: highest resolution interferometer, aims for direct imaging of black hole shadows

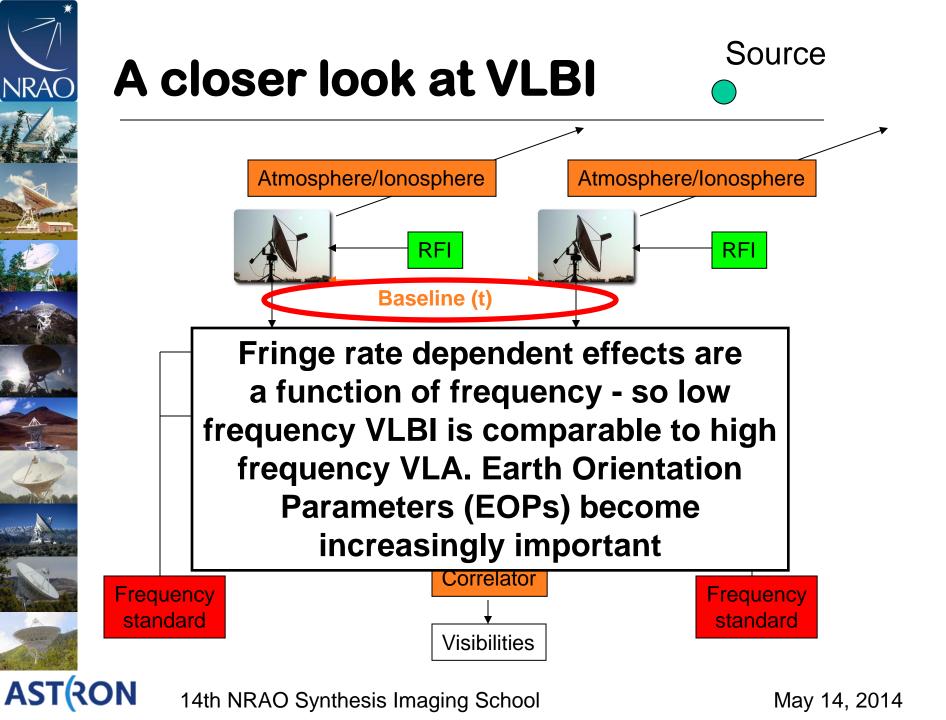


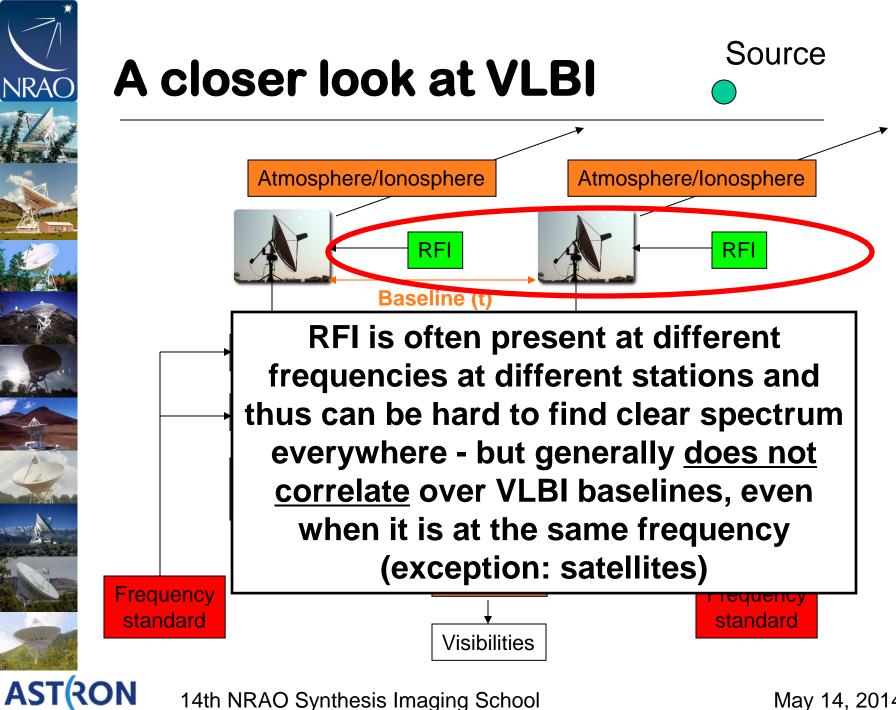

Operating at 230 and 345 GHz, resolution 60 µas (future, with ALMA, 20 µas)

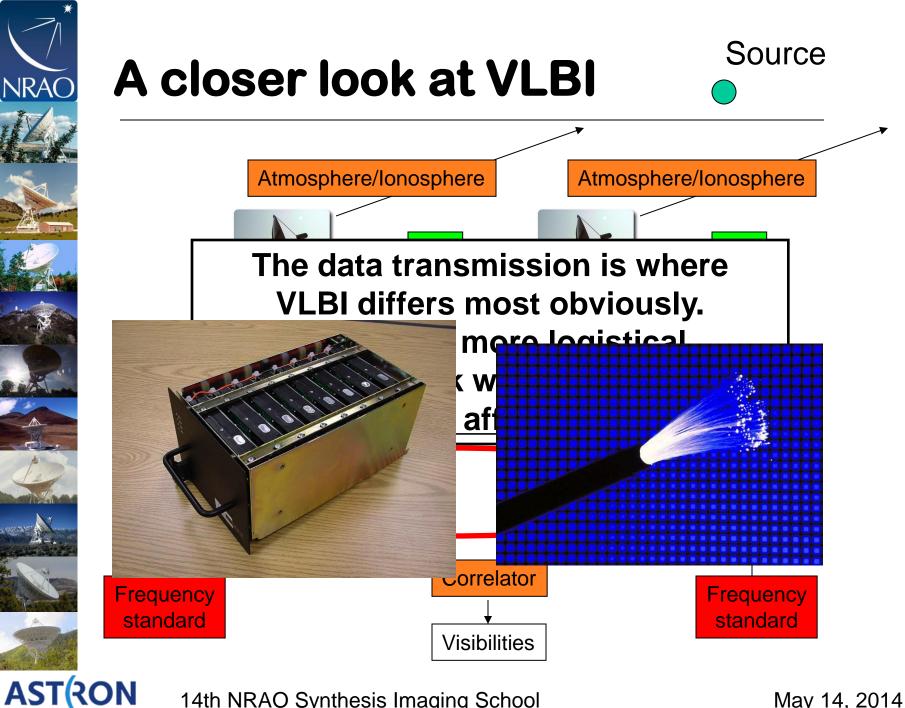
No open time, very limited duty cycle

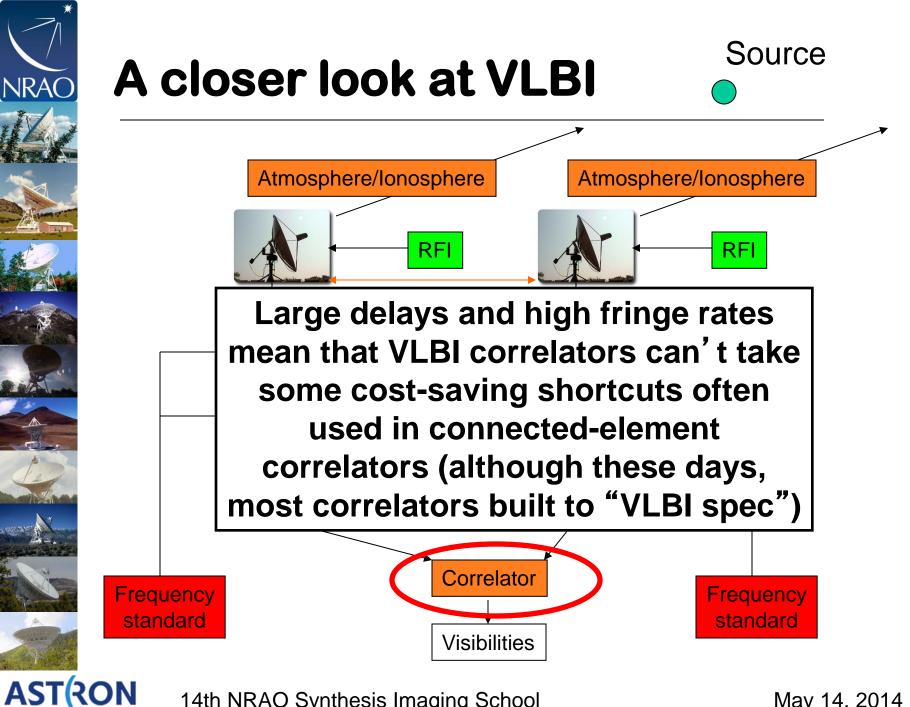


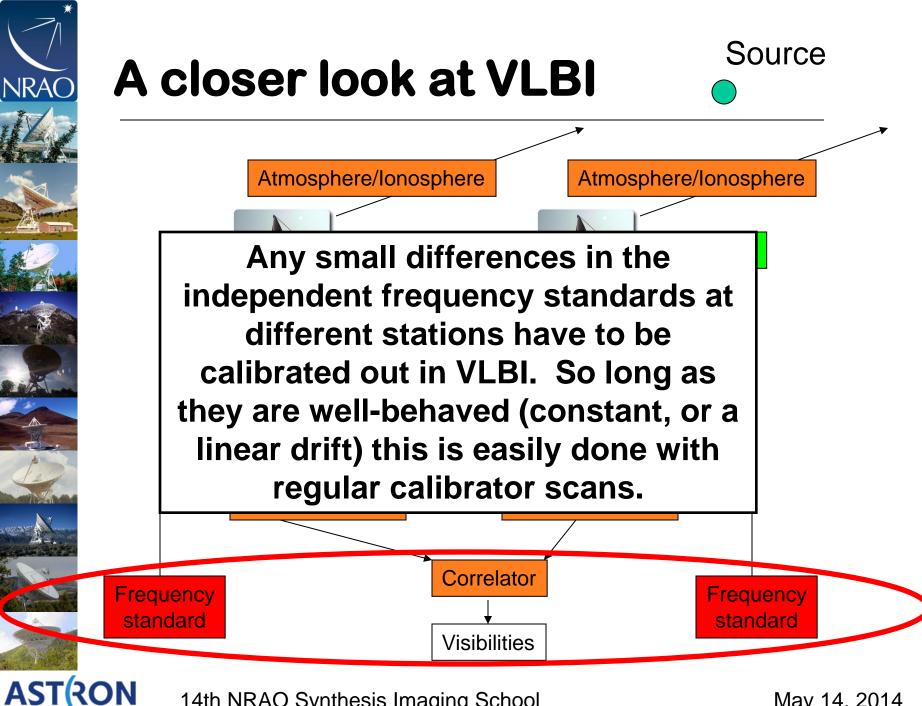

- RadioAstron: 10m telescope operating in space
- Baseline lengths
 1,000 330,000 km
- 327 MHz, 1.6 GHz,
 4.8 GHz, 22 GHz
- Open time available, must arrange other telescopes too






May 14, 2014





Historical VLBI problems

- VLBI capabilities have leapt ahead in the last few decades!
- Some observational realities remain (set by the physics), sometimes blown out of proportion

#1: Poor sensitivity

- The need to record data historically limited VLBI to narrower bandwidths
 But it has moved on from the era of 2 MI
 - But it has moved on from the era of 2 Mbps tapes!
- The VLBA + HSA does 2 Gbps (256 MHz, dual pol): beats JVLA continuum point source sensitivity at 1.4 GHz
 - But: surface brightness sensitivity obviously still extremely low!

#2: Unstable systems

- VLBI antennas still have completely independent electronics, time standard noise doesn't "wash out"
- But: modern systems (hydrogen masers, digital synthesizers) are stable on timescales of many hours

AST

#3: Unstable conditions

- This hasn't changed: atmosphere above different antennas is uncorrelated
- But this problem is not limited to VLBI: same is true of mm observing with moderate baselines (EVLA, ALMA)
- Same solution: switch between source and nearby calibrator at a sufficiently rapid interval (sensitivity helps)

#4: Unreliable imaging

- Mostly a thing of the past (when phase stability was poor)
- Nowadays, set up your observations right (sufficient calibrators) and getting dynamic ranges >10,000 is easy
- Still two remaining problems:
 - □ Often fewer antennas (10 VLBA / 27 EVLA)
 - Layout is often not optimal (antenna placement determined by geography, infrastructure)

#5: Uncertain flux scale

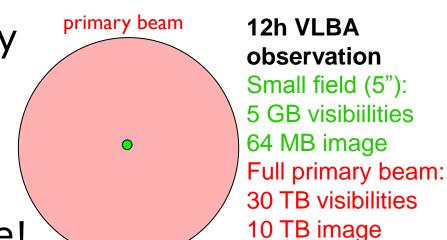
There are no constant-flux VLBI sources

 Anything compact enough is always variable - quasars eject blobs of material, pulsars scintillate...

□ Thus cannot use a "flux calibrator"

- Compensate with extra effort in a priori flux calibration (switched noise diode)
- Absolute scale of VLBI flux is probably only valid to ~10% - usually no big deal

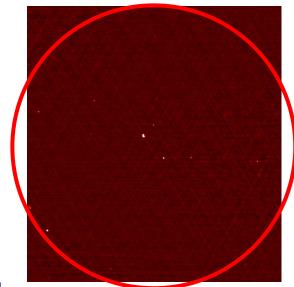
NRAC


14th NRAO Synthesis Imaging School

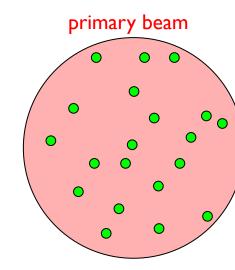
#6: Limited field of view

NRAO

AST


- Time smearing and bandwidth smearing are intense because of high fringe rate
- Older correlators had output rate restrictions, field of view ~arcseconds
- Even if correlator can make necessary visibility dataset, it will be HUGE
- And: image is 99.999999% noise!

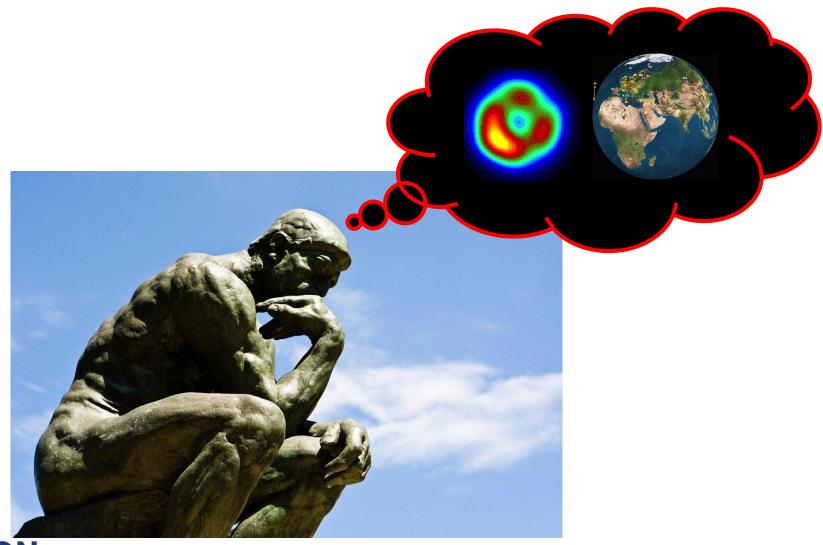
14th NRAO Synthesis Imaging School


#6: Limited field of view

- Cool new feature in modern correlators allows "multi-field" VLBI
- Multiple small output datasets centered on sources of interest – use a "finder image" from e.g. VLA, GMRT, ATCA

NRAC

AST(



12h VLBA observation 1 small field (5"): 5 GB visibiilities 64 MB image 20 small fields: 100 GB visibilities 1.5 GB image

14th NRAO Synthesis Imaging School

The practicalities of VLBI

AST(RON

14th NRAO Synthesis Imaging School

The practicalities of VLBI

- What do you do?
 - 1. Plan
 - 2. Propose
 - 3. Schedule
 - 4. Observe
 - 5. Calibrate and image
 - 6. Publish, get promoted, bask in glory...

14th NRAO Synthesis Imaging School

Plan

You need to consider your target (size, flux density, location), the array parameters (resolution, frequency, sensitivity) and calibration strategy

Object declination and size determine what array(s) are feasible, at what frequency

http://www.aoc.nrao.edu/~adeller/software/lba/ has a tool for calculating uptime, sensitivity and resolution

□ Calibrator search tools available at <u>http://www.vlba.nrao.edu/astro/calib/</u> (North) or <u>http://astrogeo.org/calib/search.html</u> (all sky)

Plan

+ Muttp://www.aoc.nrao.ar	du/~adelier/software/lba/					G 9,40	loogie		
III Apple Yahoo! Google Maps	YouTube Wikipedia News (1004	4)* Popular*							
http://www.aoc.nrao.edu/-adelle	http://www.aoc.nras.edu/~adel	la	EVN Calculator		1				
			Outpu	ıts					
Antennas used in observation			Image sensitivity (u)y/beam): 3						
	ATCA (x5) CA06	Mopra	mentle semannank (n1k)	Dearny,	1				
	Tid (34ni) Hobart	Ceduna	Baseline sensitivit						
Hart Kashima	BARTE NZ MK_VLBA	KP_VLBA	Baseline	4464	(m) Sens (m/y) 0.61	3.0	(hr) Max resolution (ma 12.1		
FD_VLBA OV_VLBA	PT_VLBA Z LA VLBA	NL_VLBA	MS_VLBA->SF_VLBA MS_VLBA->FD_VLBA	5131	9.61	3.0	10.5		
		EVLA (x1)	MK_VL3A->OV_VL8A	4015	0.61	3.0	13,4		
EVLA (x26) Effishing	Arecibo JB1	JB2	NS_VL3A->PT_VL8A	4793	0.61	3.0	11.2		
Cambrdg Westerbk	Medicina Noto	Ons-85	HE VLSA->LA VLSA	4967	0.61	3.0	10.9		
Ons-60 Shanghai	Urumqi Tarun	Metahy	HR_VL3A->SL_VL3A	6154	0.61	3.0	8.8		
Yebes Wettzell	Rob-70 Rob-34	Simela	HK_VLSA->HN_VLSA	7497	0.61	3.0	7.2		
Ny-Ales Materia	Pice-Vel PdBure	Tsukuba	MK_VL3A->SR_VL8A	4403	0.61	3.0	12.2		
VERA-Miz VERA-Ini	VERA-Dga VERA-Ish	Usuda	NK_VL3A->8C_VL8A	8606	9.61	3.0	6.3		
Yamaguchi O'Hig	TIGO-Cn Itap	La Plata	NK_VLSA->OPT	7024	9.11	3.0	7.7		
Yar (GEO) Hob (GEO)	Kisth (CEO) Mare (CEO)	Auth ICECH	MR_VLBA->EVLA (x26)	4894	0.13	3.0	11.0		
Amar (GED) ASKAP	User Set		KF VL3A->FD VL3A	743	0.61	3.0	72.5		
			KP VLBA->OV VLBA	845	0.61	3.0	63.7		
User Station Long (0-360°): 0.0	User Station Lat (-90->90*)	0.0	KP VLBA->PT VLBA	416	0.61	3.0	129.4		
			KF VL2A->LA VLDA	652	0.61	3.0	02.7		
	1. (1993) 1993 (2013) 1993 (2013) 1993	COLUMN STREET, ST.	KP VLBA->SL VLBA	2075	0.61	3.0	26.0		
User Station Tsys (Jy): 50.0	User Station El Limit (>0	07 10	KP VLBA->HN VLBA	3618	0.61	3.0	14.9		
			KF VLBA->BR VLBA	1917	0.61	3.0	20.1		
C Heddate Here	Televenes Brownstown		KP VLBA->SC VLBA	4839	0.61	3.0	11.1		
Update User	Telescope Parameters		KP VLBA->GDT	2936	0.11	3.0	18.4		
Observing frequency (MHz): 1400	(*)		uv Coverage						
	<u>.</u>		Display Beam Shape						
Bandwidth (MHz): 512	a see a second		Scale (kA)		06677	101			
Double data rate recording at ATN	F antennas (Parkes, Narrabri, Mop	ra]?	-40000						
Dual polarisation?									
Integration time (hours): 3	20000								
Number of integration repeats: 1						.(0	(bac all)		
				1.1					
Calibrator time/scan (secs): 300	(1)		10			1.1	Weren') We		

Plan

000	NRAD 1	VLBA Calibrators Query Resu	le	0
() · C ×	(http://www.viba.rrao.e	🏦 (albany ca zip coʻQ) 🖉 🖉		
Most Visited = Getting Sta	ed Vacation packages a Latest file	udlines 3)		
< mail - 📉 index a	😂 /moifac - 🔛 VL86 - 🚬	The AT MapMy	BH RAST - BH RAF	17- 👿 NRA. 🥝 🕴 🔫

Results of VLBA Calibrator Search

Below is the list of sources, in the sort order specified, that falls within the search radius. The plot at the bottom of the list shows the relative location of each calibrator with respect to the search position. In the Quality-Origin column, the letter before Origin of the source information is the approximate calibrator quality: C=acceptable calibrator; N=Non-calibrator that may be too weak or resolved and should be tested before use; U=Non-calibrator with poor position, K=possible 23 GHz calibrator near the galactic plane.

Images of the source and visibility plots are available by clicking on the square boxes in the last 4 columns. Contour levels are -1,1,2,4,8,16,32,etc. times the lowest contour level. Unless otherwise indicated, the lowest contour level is 3 mJy.

Look at the radplots for more quantitative properties of the calibrator. The calibrator positions are given in the calibrator list, and are updated. For multi-epoch observations, please check the position consistency. The correlated flux density at ~400 km baselines and at ~5000 km baselines for Sband (13cm) and Xband (4cm) are given in columns S1, S2, X1, X2, respectively. A value of -1.00 indicates that the correlated flux density is unavailable or is in the noise.

	1		1	and and	
New A	X	316			
Α	S	T	Г	R	C

	IAU Name	Other Name	X-Err (mas)	Y-Err (mas)	Separ. (deg)	S1	S2	X1	X2	Quality Origin	Visibility		Image	
		-	1	1.00		1					13cm	4cm	13cm	4cm
1	J1024-0052	1021-006	0.24	0.39	1.56	0.96	0.38	0.40	0.10	C-ICRF	W.	R.	K	R.
2	J1015+0109	1013+014	0.78	1.04	1.84	0.14	0.05	0.25	0.11	C-VCS5	K	M	M	Z
3	J1028+0255	1025+031	0.45	0.88	2.65	0.30	0.33	0.28	0.23	C-VCS1	V	K	R.	R.
4	J1011+0106	1008+013	1.02	2.82	2.97	0.28	0.21	0.17	0.08	C-VCS5	Tel.	R	R	R

VLBI proposals

- Different arrays have different deadlines
- VLBA February 1, August 1
- EVN February 1, June 1, October 1
- LBA June 15 and December 15
- Director's Discretionary Time for rapid response
- Standard info: where (sources), how (resource setup) and when (duration, date constraints); help available

VLBI proposals

Dashboard Proposals	Obs Prep Helpdesk CASA	Profile	Hi, Adam Sign Out				
My Proposals Available	Authors Available Organizations		Sunday 06 June 2010				
Validate Print	GENERAL		Help « < General > »				
Options My Proposals YLBA/10C-133 YLBA/10C-130 YLBA/10C-129 General	Observing Proposal		Status: SUBMITTED Create Date: 04/15/2010 Modify Date: 06/01/2010 Submit Date: 06/01/2010 Total Time: 762.5				
Authors Title Science Justification PSRPI: Mapping the Galactic distribution of pulsars with the VLBA Resources PSessions Type							
Student Support Print Preview VLBA/10C-100	Large Scientific Category						
VLBA/10B-137 Galactic, Astrometry/Geodesy VLBA/10B-112 Abstract							
VLBA/10A-106 Pulsars offer the opportunity to study extreme physics of neutron stars and their environments via a number of pathways, including their high energy emission, high space velocities, and extremely stable rotation periods. Their compact nature and periodic radio emission also makes them unique probes of the interstellar medium. VLBA/10A-100 Obtaining very accurate, model-independent pulsar distances and velocities has been a highlight of VLBA science to date, allowing precision tests of General Relativity and confirming the existence of a very high velocity tail to the pulsar distribution, to name but two results. However, the sample size of successful, high accuracy VLBI VLBA/09B-110 optionation of a very high velocity tail to the pulsar distribution, to name but two results. However, the sample size of successful, high accuracy VLBI							
S Find: Q friend		se Reached end of page, continued from top					
Done			≜ ∠				

AST(RON

14th NRAO Synthesis Imaging School

Scheduling

- The program SCHED (C. Walker, NRAO) is used to schedule VLBI experiments
- You provide a list of stations and sources, the observing frequency and bandwidth, and a list of scans

General recipe:

□ Observe target as often as you can

□ Scans on phase reference as necessary (cycle ~6 min @ 1.6 GHz, ~30s @ 43 GHz)

Include very bright calibrator ~few hours, other special calibration as necessary

Observing

Depends on array:

- EVN and VLBA: provide schedule file, wait to receive the correlated data by ftp
- LBA: provide schedule file, and go to one of the stations to assist with observations (a great way to learn
 - interferometry!)

AST(RON

Data reduction (calibration)

- AIPS is the predominant package for VLBI calibration; a few important steps can only be carried out in AIPS
- Calibration includes flagging, amp. calibration (from switched power), EOP correction, ionosphere correction, delay, bandpass, and phase solutions
- I find the ParselTongue* package (a python interface to AIPS) to be very convenient for scripting

NRA(

*http://www.jive.nl/dokuwiki/doku.php?id=parseltongue:parseltongue

14th NRAO Synthesis Imaging School

NRAC

AST

Data reduction (imaging)

- A calibrated VLBI visibility dataset looks just like any other interferometer - so you can pick your imaging software:

 - □ difmap
- Wide-field imaging is computationally intensive (time/bandwidth smearing)
- Limited uv coverage means you need to be careful with deconvolution

New/ongoing VLBI innovation

- Increased bandwidth for sensitivity (target and calibrator)
 - \Box EVN/LBA now 1 Gbps routinely, soon 4 Gbps? \Box VLBA[HSA] now 2 Gbps , 40[3] μ Jy 1 σ (1 hr)

New processing techniques


NRAC

- Software correlators; high time/freq resolution, multiple fields, pulsar processing
- □ Improved astrometric analysis
- Real-time correlation ("eVLBI")
 - LOFAR, EVN, some LBA: offers potentially higher data rates (plus data sooner!)

The future of VLBI

African VLBI Network: network of re-purposed ex-telecoms dishes

- Phased ALMA for mm-VLBI and Event Horizon Telescope
- Existing facilities: more bandwidth increases, data processing innovations
- Longer term (5+ years): phased SKA1mid and SKA1-survey; huge advance for southern observations

Conclusions

- VLBI offers a unique capability; the highest angular resolution imaging in astronomy
- Gives the ability to probe smallest size scales and do very precise astrometry
- With limitations (determined by physics); only compact objects
- VLBI is not a "black art" no harder than high frequency VLA observing

Questions?

AST(RON

14th NRAO Synthesis Imaging School

#6: No field of view

At the phase centre, all frequencies have zero phase, all the time

AST(RON

For 8,000km baselines @ 1.6 GHz, 0.5 MHz channels limit the FOV to <10"

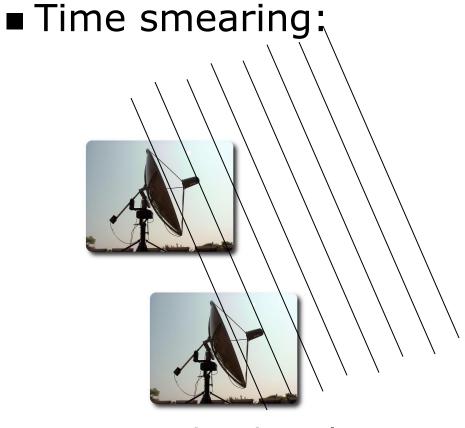
14th NRAO Synthesis Imaging School

#6: No field of view

Bandwidth smearing:

Off the phase centre, phase varies as a function of frequency, so if you average you get decorrelation

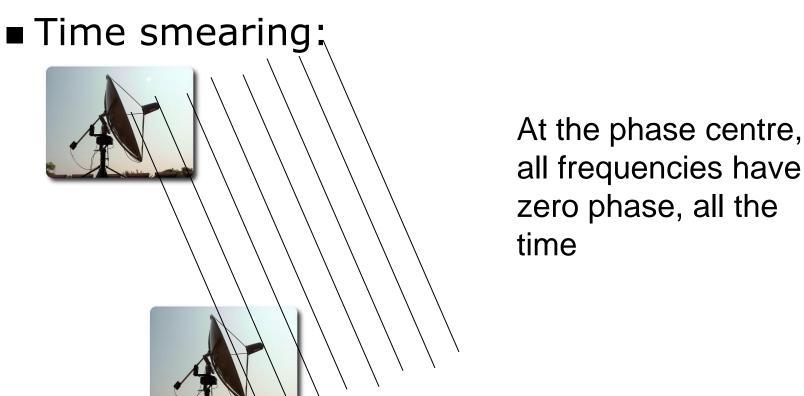
AST(RON


For 8,000km baselines @ 1.6 GHz, 0.5 MHz channels limit the FOV to <10"

14th NRAO Synthesis Imaging School

AST(RON

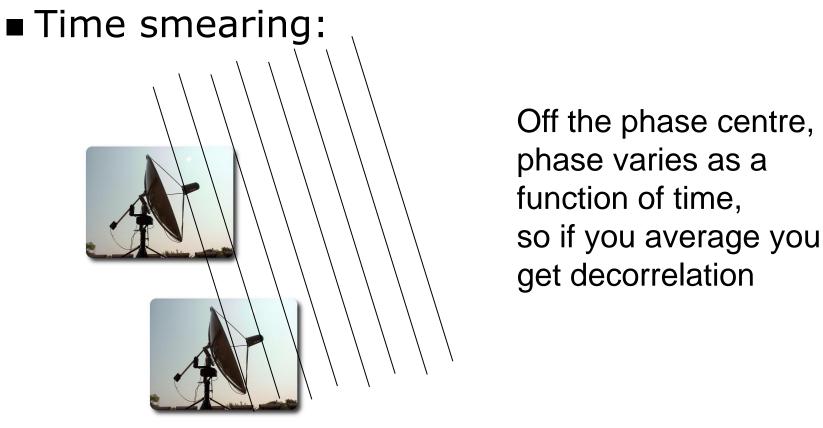
#6: No field of view


At the phase centre, all frequencies have zero phase, all the time

14th NRAO Synthesis Imaging School

#6: No field of view

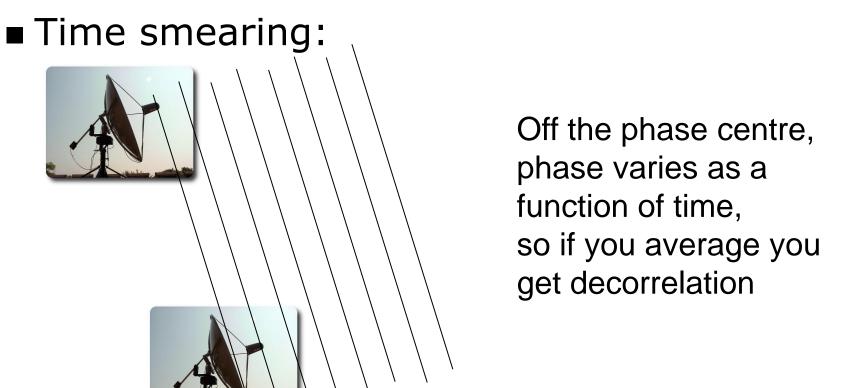
AST(RON


For 8,000km baselines @ 1.6 GHz, 2 sec averahing limits the FOV to <20"

14th NRAO Synthesis Imaging School

AST(RON

#6: No field of view



For 8,000km baselines @ 1.6 GHz, 2 sec averahing limits the FOV to <20"

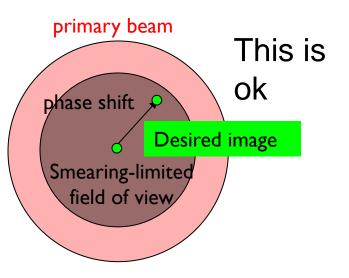
14th NRAO Synthesis Imaging School

#6: No field of view

AST(RON

For 8,000km baselines @ 1.6 GHz, 2 sec averaging limits the FOV to <20"

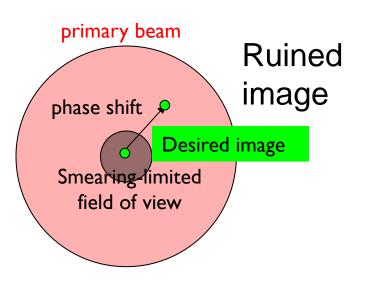
14th NRAO Synthesis Imaging School



#6: No field of view

- Even if high time and frequency resolution was possible (and has been for some time with newer correlators) the data volumes get immense - >10TB data to image the full primary beam...
- BUT: New work to mitigate the data volume problem just becoming available

- Pointing" a correlator involves appropriate delay and phase corrections
- "Re-pointing" correlated visibilities requires the appropriate differential phase change (fn of baseline/freq/time)



NRAO

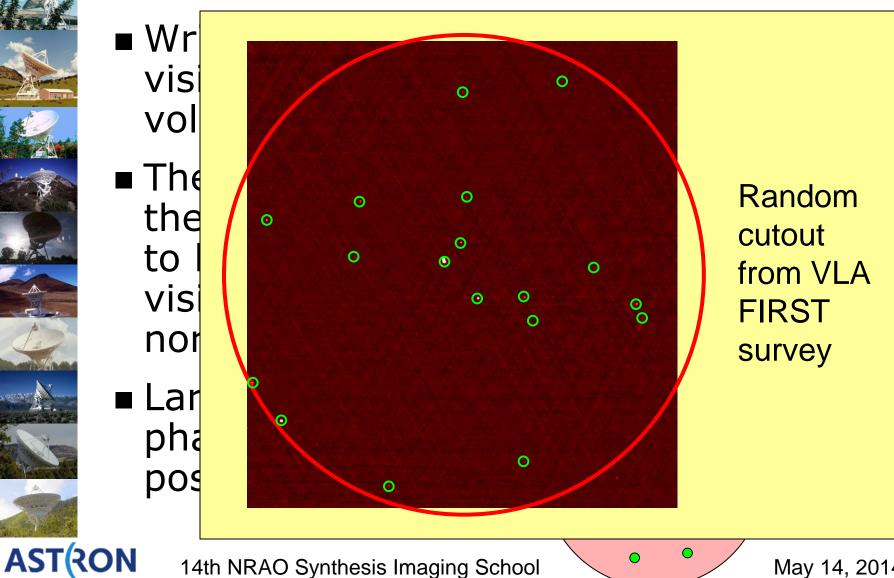
14th NRAO Synthesis Imaging School

- Pointing" a correlator involves appropriate delay and phase corrections
- "Re-pointing" correlated visibilities requires the appropriate differential phase change (fn of baseline/freq/time)
- But if the data already averaged too heavily in frequency and time, smearing is too severe

AST(RON

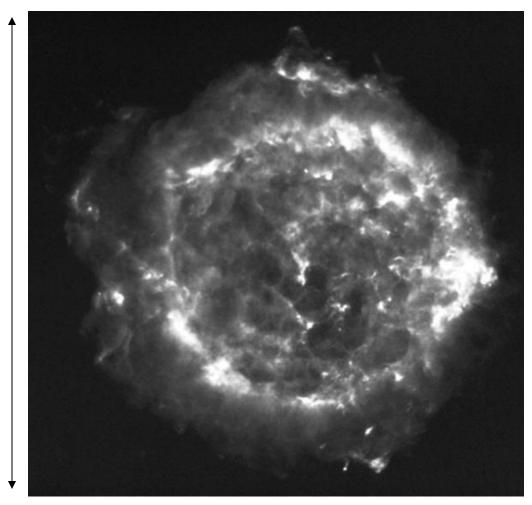
NRAO

- Writing out sufficiently high resolution visibilities suffers from the same data volume problem as imaging, but...
- The DiFX software correlator used at the VLBA and LBA now allows the shift to be done inside the correlator; visibilities then averaged down to normal resolution


NRAC

Large number of phase centres possible; AGN surveying!

14th NRAO Synthesis Imaging School



NRAO

... but there's always a catch

VLA beam •

VLBA beam has 2 x 10⁻⁷ of the area of the VLA beam

The Cas A supernova remnant, VLA C array, 6cm14th NRAO Synthesis Imaging SchoolMay 14, 2014