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Why do we need wide bandwidths ? 

σcont =
σchan

√(N chan)
∝

T sys

√N ant (N ant−1) δ τ δν

√ 2GHz
50MHz

≈6

Broad-band receivers => Increased 'instantaneous' imaging sensitivity

   Continuum sensitivity :  
       (at field-center)

  
    50 MHz → 2 GHz  =>  Theoretical improvement :                     times.

In practice, effective broadband sensitivity for imaging depends on bandpass shape, data weights, and 

regions of the spectrum flagged due to RFI. For VLA L-band, we typically use 70% of the band. 
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Why do we need wide bandwidths ? 

max:min

νmax−νmin

max−min/mid

νmin , νmax

Some bandwidth jargon.....

Frequency Range :                                     (1 – 2  GHz)     (4 – 8 GHz)     (8 – 12 GHz)  

Bandwidth :                                                   1 GHz             4 GHz             4 GHz 
          
Bandwidth Ratio :                                           2 : 1               2 : 1              1.5 : 1

Fractional Bandwidth :                                    66%                66%                40%

σcont =
σchan

√(N chan)
∝

T sys

√N ant (N ant−1) δ τ δν

 2GHz
50MHz

≈6

Broad-band receivers => Increased 'instantaneous' imaging sensitivity

   Continuum sensitivity :  
       (at field-center)

  
    50 MHz → 2 GHz  =>  Theoretical improvement :                     times.

In practice, effective broadband sensitivity for imaging depends on bandpass shape, data weights, and 

regions of the spectrum flagged due to RFI. For VLA L-band, we typically use 70% of the band. 
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The instrument and the sky change with frequency...

UV-coverage 
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The instrument and the sky change with frequency...

UV-coverage 
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Multi-Frequency-Synthesis – UV coverage

1.5 GHz 1 – 2 GHz
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Multi-Frequency-Synthesis – UV coverage

1.5 GHz 1 – 2 GHz
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Multi-Frequency Synthesis – UV coverage

1.5 GHz 1 – 2 GHz
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Multi-Frequency Synthesis – UV coverage

1.5 GHz 1 – 2 GHz
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Multi-Frequency Synthesis – UV coverage

1.5 GHz 1 – 2 GHz
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Multi-Frequency Synthesis – UV coverage

1.5 GHz 1 – 2 GHz
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Multi-Frequency Synthesis – UV coverage

1.5 GHz 1 – 2 GHz
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Multi-Frequency Synthesis – UV coverage

  – Overlapping UV-coverage => better sensitivity

  – Increased UV-filling => better imaging-fidelity

  – Larger spatial-frequency range => better angular-resolution

 cont=
 chan

N chan



bmax



14th NRAO Synthesis Imaging Workshop, 19 May 2014 14

Imaging Properties change with frequency

1.0 GHz 1.5 GHz 2.0 GHz 1.0 - 2.0 GHz

- Angular-resolution increases at higher frequencies
- Sensitivity to large scales decreases at higher frequencies
- Wideband UV-coverage has fewer gaps => lower Psf sidelobe levels

Measure visibilities in frequency ‘channels’ and place them at their 
correct locations on the UV-plane.
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Bandwidth smearing (chromatic aberration) 

ν0
ν uν

Suppose the entire receiver bandwidth was measured in one channel

                                                               is mistakenly mapped to                 
                 
                                                   Similarity theorem of Fourier-transforms : 

                                              Radial shift in source position with frequency.
                                                  => Radial smearing of the sky brightness

V u

U

V

u0. v0

umax , vmax

umin , vmin

Excessive channel 
averaging during 
post-processing has 
a similar effect.

Bandwidth smearing 
limit for HPBW 
field-of-view : 

            2 MHz                       200 MHz                    1.0 GHz      

Bandwidth Smearing limits at L-Band (1.4 GHz), 
      33 MHz (VLA D-config),  10 MHz (VLA C-config),  
      3 MHz (VLA B-config),  1 MHz (VLA A-config)

δ ν<
ν0D
bmax

 0
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The instrument and the sky change with frequency...

UV-coverage 
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Imaging Equations

I obs= I sky∗PSF
I wb
obs
=∑ν

[ I ν
sky
∗PSF ν ]

Image reconstruction   
                
  = deconvolution : remove the
      effect of the instrument’s
      response to a flat spectrum
      point source.

  = non-linear fitting of a
      narrow-band model of
      the sky to the data

(Ref : Imaging and Deconvolution lecture)

 Wideband Image reconstruction 

   = Treat each frequency separately

                    
                      (or)

   =  joint deconvolution : remove 
        the effect of the instruments
        response to a point source with 
        spectral features

   = non-linear fitting of a wide-band  
       model of the sky to the data

Narrow Band / Flat spectrum sky Wide Band Sky with 
spectral structure

I wb
obs
≈ I sky∗[∑ν

PSFν ]

(Ref : Spectral Line Analysis lecture)
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Single-channel vs MFS imaging – Angular Resolution

3 flat-spectrum sources + 1 steep-spectrum source ( 1-2 GHz )

Images made at multiple frequencies ( Spectral Cube / Image Cube )

Combine  
single-frequency 
images (after 
smoothing)

Do MFS using all 
data, but ignore 
spectra

Do MFS using all data
+ Model and fit for spectra too
= Intensity and Spectral-Index
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Algorithm : Multi-Term MFS (with multi-scale) 

Sky Model :  Collection of multi-scale flux components whose amplitudes   
                    follow a Taylor polynomial in frequency

Reconstruction Algorithm : Linear least squares + deconvolution

Data Products : Taylor-Coefficient images                          

                                 that represent the sky spectrum I ν
sky
=∑t

I t (
ν−ν0
ν0 )

t
I 0,
m I 1,

m I 2,
m...

I 0
m
=I  0

I1
m
=I  0

 I 2
m
=I  0  −1

2
 I =I  0  0 

 log / 0 

Interpretation :

      - As a power-law ( spectral index and curvature )

    
Sault &Wieringa, 1994
Rau &Cornwell, 2011
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Dynamic-range with MS-MFS : 3C286 example : Nt=1,2,3,4

NTERMS = 1

Rms :
 9 mJy -- 1 mJy

DR :
   1600 - 13000

NTERMS = 2

Rms :
1 mJy  -- 0.2 mJy

DR :
 10,000 - 17,000

NTERMS = 4

Rms 
0.14 mJy  -- 80 uJy

DR :
>110,000 
      - 180,000

NTERMS = 3

Rms :
 0.2 mJy -- 85 uJy

DR :
 65,000 - 170,000
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Example of wideband-imaging on extended-emission

Spectral 
Turn-ove
r

Average Spectral Index Gradient in Spectral Index

Intensity Image 

 

=1 =−1

=−2

0.05 ≈0.5

 0.2  ≈0.5

multi-scale point-sourc
e

    MFS 
(4 terms)









I 0 I 0

=> Spectral-index error is dominated by 'division between noisy images'
                     – a multi-scale model gives better spectral index and curvature maps
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Supernova Remnants at L and C Band                         

These examples used  nterms=2, and about 5 scales.
       
 => Within 1-2 Ghz and 4-8 GHz,  spectral-index error is < 0.2 for  SNR>100.          

 => Dynamic-range limit of  few x 1000   ---> residuals are artifact-dominated

I 0

I 0

I 0

I 0

[ Bhatnagar et al, 2011 ]
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Spectral Curvature

≈0.2
=−0.52





I

=> Need SNR > 100 to fit spectral index variation ~ 0.2  (at the 1-sigma level ... )   
                =>   Be very careful about interpreting 

From existing P-band (327 MHz), L-band(1.42 GHz) 
and C-band (5.0 GHz) images of the core/jet

      P-L spectral index  : -0.36 ~ -0.45  
      L-C spectral index  : -0.5 ~ -0.7

                    = -0.52 
                    = -0.62
                    = -0.42
                    = -0.52,       
=-0.48




 

Data : 10 VLA snapshots at 16 frequencies ( 1.2 – 2.1 GHz ) 




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For which scales can we reconstruct the spectrum ? 

UV distance

A
m

p
( 

V
is

 )
νmin UV range

High spatial 
frequencies 
measured only 
at νmax

Low spatial 
frequencies 
measured only 
at νmin

νmax UV range
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For which scales can we reconstruct the spectrum ? 

UV distance

High spatial 
frequencies 
measured only 
at νmax

Low spatial 
frequencies 
measured only 
at νmin

Visibility function of 
compact emission 
at        and         νmax

νmax UV range

νmin UV range

νmin

A
m

p
( 

V
is

 )

Visibility function of 
extended emission 
at        and     νmaxνmin
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For which scales can we reconstruct the spectrum ? 

UV distance

νmin UV range

High spatial 
frequencies 
measured only 
at νmax

Low spatial 
frequencies 
measured only 
at νmin

Visibility function of 
compact emission 
at        and         νmax

A
m

p
( 

V
is

 )

νmin
Visibility function of 
extended emission 
at        and     νmin νmax

UV rangeνmax



14th NRAO Synthesis Imaging Workshop, 19 May 2014 27

Moderately Resolved Sources + High SNR

Restored Intensity image

Spectral Index map

4.0 GHz

3.4 GHz

2.8 GHz

2.2 GHz

1.6 GHz

1.0 GHz



I

Can reconstruct the spectrum at the angular resolution 
                                                   of the highest frequency (only high SNR)
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Very large spatial scales – Unconstrained spectrum



I

The spectrum at the largest spatial scales is NOT constrained by the data

Amplitude 
vs UV-dist

    Data

Data  +  
Model

( Wrong )

True sky has 
one steep 
spectrum 
point, and a 
flat-spectrum 
extended 
emission

No short 
spacings to 
constrain the 
spectra

=> False steep 
spectrum 
reconstruction
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Very large spatial scales – Need additional information



I

External short-spacing constraints ( visibility data, or starting image model )

Amplitude 
vs UV-dist

    Data

Data  +  
Model

( Correct )

True sky has 
one steep 
spectrum 
point, and a 
flat-spectrum 
extended 
emission

With short 
spacing info, 

Correct 
reconstruction 
of a flat 
spectrum
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Spectral Index Accuracy ( for low signal-to-noise )

To trust spectral-index values, need SNR > 50  (within one band – 2:1) 
      For SNR < 50 need larger bandwidth-ratio.                     

RMS
5 uJy/bm

Accuracy of the spectral-fit increases with larger bandwidth-ratio 

Source                     Peak Flux         SNR       L alpha      C alpha        LC alpha      True

Bottom right              100 uJy           20         -0.89           -1.18           -0.75          -0.7
Bottom left                100 uJy           20         +0.11          +0.06         +0.34        +0.3
Mid                            75 uJy             15         -0.86           -1.48           -0.75           -0.7
Top                             50 uJy            10          -1.1               0              -0.82           -0.7

1 – 2 GHz, 4 hr 4 - 8 GHz , 4 hr 1 – 2 GHz, 4 - 8 GHz, 2 hrs each
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Wide-band Self-Calibration (for HDR imaging)

Dynamic range 
improved from 
~2000 to ~4000.

Amplitudes of bandpass 
gain solutions 

   ( < 5% from 1.0  )

-- First, get a wide-band sky model. 
-- Follow with ‘bandpass’ calibration 
-- Check amplitude solutions carefully before applying them.
                                                        ( easy to impose an artificial spectrum on your data )

In these VLA data (of M87), each SPW had been 
calibrated, imaged, and phase self-cal’d 
separately,  prior to joint MFS imaging and 
wide-band self-cal to smooth out the spectrum.
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Using Wide-Band Models for other processing....

(1) Continuum Subtraction       

  - De-select frequency channels with spectral-lines

  - Make a wide-band image model 

  - Predict model-visibilities over all channels

  - Subtract these model visibilities from the data

(2) Combining with single-dish data

  - Make Taylor-coefficient maps from 
    multi-frequency single-dish images

  - Use as a starting model in the 
    MT-MFS interferometric reconstruction

I ν

ν

A
m

p
( 

V
is

 )
UV distance
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Wide-Bandwidths and Polarization / Faraday-Rotation

Stokes Q,U,V can also change with frequency

 - If the expected variation < ~1% of the peak, MFS (nt=1) will suffice

 - If not, it is safest to make a Cube (as the spectra may not smooth)

Faraday Rotation-Measure Synthesis 

Images of polarized surface-brightness at various Faraday-depths : 

- P = Q + i U :  Make spectral cubes for Q and U separately, and calculate P

- For each pixel in the P-cube,  solve                                           for  

This calculation is currently done post-deconvolution, but it could be folded into the 
image reconstruction framework.

P2
=∫ Fe2 i2

d F 

F 

Brentjens, 2008, Bell et al, 2013

(Ref : Polarization in Interferometry” lecture)
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Wideband VLA imaging of Abell 2256  [ Owen et al, 2014 ]

Intensity Spectral Index
(Int.Weighted.)

Fractional 
Polarization

Max 
Rotation 
Measure

20 uJy 300 uJy -2.0 -0.5

-60 rad/m20.60.1 +80 rad/m2

VLA A,B,C,D at 
L-Band (1-2 GHz)

VLA A, at S&C 
bands(2-4, 4-6, 
6-8 GHz)

Calibration and 
Auto-flagging in 
AIPS.

Intensity and 
Spectral index 
Imaging in CASA.
(with Pbcor only 
post-deconv.)  

Polarization and 
Rotation Measure 
Imaging in AIPS. 
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The instrument and the sky change with frequency...

UV-coverage 

b

I sky

Su , v =
b

=
b
c

Sky Brightness Primary Beam
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
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Wide-Band Wide-Field Imaging : Primary Beams

Average Primary Beam

1.0 GHz

VLA PBs

1.5 GHz

2.0 GHz

50%

90%

Spectral Index of PB

20%

MFS : artificial 'spectral index' 
away from the center

For VLA L-Band (1-2 GHz)

- About  -0.4 at the PB=0.8  
   (6 arcmin from the center)
- About  -1.4 at the HPBW        
 (15 arcmin from the center)
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Wide-Band Wide-Field Imaging : Primary Beams

Average Primary Beam

1.0 GHz

VLA PBs

1.5 GHz

2.0 GHz

50%

90%

Spectral Index of PB

20%

MFS : artificial 'spectral index' 
away from the center

For VLA L-Band (1-2 GHz)

- About  -0.4 at the PB=0.8  
   (6 arcmin from the center)
- About  -1.4 at the HPBW        
 (15 arcmin from the center)

Primary beams also 
 - rotate with time
 - have polarization structure
    ( beam squint, etc... )

(Ref: Wide-Field Imaging – Full Beams  lecture)
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Wide-Band Primary Beam Correction

1.0 GHz

1.5 GHz

2.0 GHz

Cube Imaging

  -- Sky model represents
  -- Divide the output image at each frequency by

Multi-Term MFS Imaging

   -- Taylor coefficients represent
   -- Polynomial division by PB Taylor coefficients

Wideband A-Projection

    -- Remove         during gridding (before model fitting)
    -- Also handles PB rotation/squint
    -- Output spectral index image represents only the sky

I (ν)P (ν )
P (ν)

I (ν)P (ν)

(I 0,
m I 1,

m I 2,
m...)

(P0,P1,P2,...)
=(I 0,

sky I 1,
sky I 2

sky ...)

P (ν)
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Imaging Options :   MT-MFS  [y/n],  A-Projection  [y/n]

              MT-MFS
 
Multi-term MFS (wideband) Imaging
                            + 
Absorb PB spectrum into sky model
                            + 
Post-deconvolution Wideband PBcor 
 for intensity and alpha

       MT-MFS  +  WB-A-Projection 

Multi-term MFS with wideband A-Projection 
to remove PB spectrum during gridding 
                              + 
Minor cycle sees only sky spectrum
                              + 
Post-deconvolution PBcor of intensity only.

                    Cube

Per channel Hogbom/Clark/CS Clean
                          + 
Per channel post-deconvolution Pbcor
                          + 
Smooth to lowest resolution
                          +
Fit spectrum per pixel, collapse chans

           Cube + A-Projection

Same as Cube,
  - with narrow-band A-Projection 
     per channel

( A-Projection :  Construct gridding 
convolution operators from antenna 
aperture illumination models.  Removes 
beam squint and accounts for aperture 
rotation )

 Sault &Wieringa 1994, Rau & Cornwell, 2011 Bhatnagar, Rau, Golap,  2013

Bhatnagar, Cornwell, Golap, Uson,  2004
Hogbom 1974, Clark 1980, Schwab & Cotton 1983, 

Schwarz, 1978
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Low dynamic range test (< 10^4) – compare four methods

MT-MFS
MT-MFS
     +
WB-AWP

Cube
   +
AWPCube

2 uJy rms

2 uJy rms

3 uJy rms

peak res : 
9 uJy

3 uJy rms

Brightest 
Source :
7 mJy
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Histogram of    Reconstructed / True    Intensity 

   => Brighter sources and MFS methods are more accurate

( Different shades in the plots indicate different source intensity ranges )
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Histogram of    Reconstructed – True   Spectral Index

=> Spectral index accuracy degrades faster than intensity...

( Different algorithms produced different #s of usable spectral indices )
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High dynamic range test ( >10^4 ) - compare four methods

Cube
   +
AW-Proj

MT-MFS
      +
WB-AWP

MT-MFS

Cube

Brightest 
Source :
100 mJy

4 uJy rms

peak res : 
20 uJy 

2 uJy rms

6 uJy rms*

peak res : 
 15 uJy

3 uJy rms
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Wideband VLA imaging of IC10 Dwarf Galaxy                        

50% of PB

After PB-correction Before PB-correction

MT-MFS : Wide-band PB-correction after
               multi-term multi-scale MFS.

Cube : Spectral-index map made by 
           cube imaging, smoothing to lowest
           resolution, and spectral fitting.

IC10 Dwarf 
Galaxy :

Spectral Index 
across C-Band.

Dynamic-range 
~ 2000

[ Heesen et al, 2011 ]
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The instrument and the sky change with frequency...

UV-coverage 

b

I sky

Su , v =
b

=
b
c

Sky Brightness
Primary Beams

 ( Mosaic )

I sky

Pν
PνPν

HPBW =


D
=
c
 D

log I  

log  / c 

( ννc )
1/3

e−ν /νc

(
ν
νc )

−α

I (ν)
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Wide-Band Wide-Field Imaging : Mosaics

The mosaic primary beam has an artificial spectral index all over the FOV
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Wide-Band Wide-Field Imaging : Mosaics

Algorithms : 

  - Deconvolve Pointings separately or together ( Stitched vs Joint Mosaic )
         - Impacts image fidelity, especially of common sources.

  - Deconvolve Channels separately or together ( Cube vs MFS )
         - Impacts imaging fidelity and sensitivity, dynamic range

  - Use A-Projection or not ( Accurate vs Approximate PB correction )
         - Impacts dynamic range and spectral index accuracy

The mosaic primary beam has an artificial spectral index all over the FOV

(Ref: Wide-Field Imaging – Mosaicing lecture)
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Comparison of several wideband mosaic methods

  Joint Mosaic         Joint Mosaic         Joint Mosaic        Stitched Mosaic  Stitched Mosaic
  Wideband-AP          Cube                  Cube-AP               Wideband          Wideband-AP

1.0002
 -0.508

1.0004
-0.502

1.0005
-0.507

0.98
 -0.52

0.99
-0.47

0.887
-0.62

1.011
 -0.51

1.012
-0.48

1.04
-0.53

0.88
 -0.87

0.90
-0.80

0.73
-1.6

1.01
 -0.48

0.99
-0.50

1.007
-0.7

A

B

C

A

B

C

Dataset : L-Band D-config, 3 pointings, 5 sources ( intensity = 1 Jy, alpha= -0.5 )
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Wideband Mosaic Imaging Accuracy                

Cube + Joint Mosaic 
(with static Primary Beams)

Dyn.Range = 5000:1

Cube + A-Projection 
          + Joint Mosaic

Dyn.Range = 10000:1

Wideband A-Proj + 
Joint Mosaic + 
Multi-term MFS
Dyn.Range = 40000:1

[ U.Rau et al, (in prep) 2014 ]

So far, none of our methods produced accurate spectral indices below 10 micro Jy.
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Wide-Band (wide-field) Imaging - Summary

– UV coverage changes with frequency

     -- Avoid bandwidth-smearing
     -- Use multi-frequency-synthesis 

         -- to increase the uv-coverage and image-fidelity
         -- to make images at high angular-resolution

– Sky brightness changes with frequency

     -- reconstruct intensity and spectrum together (MT-MFS)
     -- (or) make a Cube of images

 
– Instrumental primary beam changes with frequency

      -- divide PB-spectrum from observed sky-spectrum.
      -- apply wide-field imaging techniques to eliminate
           the PB frequency dependence during imaging.
      -- Stitched vs Joint mosaics

b

I sky

log I  

log  / c 

( ννc )
1/3

e−ν /νc

(
ν
νc )

−α

I sky

Pν

I sky

Pν
PνPν
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Wide Band (wide field) Imaging – some guidelines

-- MFS has better imaging fidelity, resolution and sensitivity than Cube

-- For 2:1 bandwidth, the dynamic range limit with standard MFS 
    (no spectral model) is  few 100 to 1000  for a spectral index of -1.0

-- For point sources, 
          MT-MFS spectral index errors < 0.1 for SNR > 50 ( 2:1 bwr )
                                                                  for SNR > 10 ( 4:1 bwr )

-- For extended emission
          MT(MS)-MFS spectral index errors < 0.2 for SNR > 100

-- For 2:1 bwr, the PB’s artificial spectral index at the HPBW is -1.4 

-- VLA beam squint and rotation effects appear at the few x 10^4 DR.

-- Joint mosaics have better imaging fidelity than stitched mosaics.

-- The current most practical approach to wideband mosaicing is 
    cube joint mosaicing using A-Projection (accuracy vs cost vs software)
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G55 examples.....

7 hour synthesis,   L-Band,   8 spws x 64 chans x 2 MHz,  1sec integrations

Due to RFI, only 4 SPWs were initially imaged ( 1256, 1384, 1648, 1776 MHz )

Imaging Algorithms applied : MS-MFS with AW-Projection

     (nterms=2, multiscale=[0, 6, 10, 18, 26, 40, 60, 80] )

Peak Brightness         :   6.8 mJy
Extended Emission    :  ~ 500 micro Jy
Peak residual     :  65 micro Jy
Off-source RMS :  10 micro Jy (theoretical = 6 micro Jy)

Example : SNR G55.7+3.4 
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G55 examples..... Only MS-Clean
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G55 examples..... MS-Clean + 
W-Projection
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G55 examples..... MS-MFS + 
W-Projection

Max sampled spatial scale : 19 arcmin (L-band, D-config)
Angular size of G55.7+3.4 :  24 arcmin

MS-Clean was able to reconstruct total-flux of 1.0 Jy
MS-MFS large-scale spectral fit is unconstrained.
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G55 examples..... MS-MFS + 
W-Projection + 
MS-Clean
starting  
model
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G55.7+3.4 : Supernova-Remnant + Pulsar

=−1.1

=−2.7

=−0.9 ≈−3.2

≈−2.9

Spectral Indices are artificially-steepened by the Primary Beam
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Spectral Indices before and after WB-A-Projection

Without PB correction 
    Outer sources are artificially steep 

Intensity-weighted spectral index maps ( color = spectral index from -5.0 to +0.2 )

With PB correction (via WB-AWP)
    Outer sources have correct spectra 
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Wide-field sensitivity because of wide-bandwidths

1

4

G55.7+3.4 : 4 x 4 degree field-of-view from one EVLA pointing

 1 Jy total flux

 24 arcmin 

(PB: 30 arcmin)

10 micro Jy RMS

=> Wideband Imaging implies wide-field imaging



14th NRAO Synthesis Imaging Workshop, 19 May 2014 60

                                       Summary

Broad-band receivers provide increased instantaneous sensitivity

Cube-imaging will suffice for a quick-look, and bright simple targets

For deep imaging, do wideband MFS (intensity and spectrum)

Apply appropriate wideband primary beam correction

Choose your algorithms based on desired accuracy and computing cost 

Pay attention to the many sources of error in this whole process.

           New astrophysics made possible by new instruments !

         High dynamic range, wideband, full-polarization, mosaic imaging
         --> An ACTIVE area of research for VLA and other new telescopes
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