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T(l,m) 

Fourteenth Synthesis Imaging Workshop 

Visibility and Sky Brightness 

• V(u,v), the complex visibility function, is the 2D Fourier transform of T(l,m), the    

sky brightness distribution (for incoherent source, small field of view, far field, etc.) 

     [for derivation from van Cittert-Zernike theorem, see TMS Ch. 14] 

 

• mathematically 
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u,v are E-W, N-S spatial frequencies [wavelengths] 

l,m are E-W, N-S angles in the tangent plane [radians] 

(recall                                ) 



The Fourier Transform 

• Fourier theory states and any well behaved signal (including 

images) can be expressed as the sum of sinusoids 

 

 

 

 

 

 

 

Jean Baptiste 

Joseph Fourier  

1768-1830 

signal 4 sinusoids sum 

• the Fourier transform is the mathematical tool that decomposes a signal 

into its sinusoidal components 

• the Fourier transform contains all of the information of the original signal 
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The Fourier Domain 

• acquire some comfort with the Fourier domain 

• in older texts, functions and their Fourier transforms 

occupy upper and lower domains, as if “functions circulated 

at ground level and their transforms in the underworld” 

(Bracewell 1965) 

 

• some properties of the Fourier transform 

adding 

scaling 

shifting 

convolution/multiplication 

Nyquist-Shannon sampling theorem 
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Visibilities 

• each V(u,v) contains information on T(l,m) everywhere,                                    

not just at a given (l,m) coordinate or within a particular subregion 

 

• each V(u,v) is a complex quantity 

– expressed as (real, imaginary) or (amplitude, phase) 

T(l,m) V(u,v) amplitude V(u,v) phase 
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Gaussian Gaussian elliptical 

Gaussian 
elliptical 

Gaussian 

Example 2D Fourier Transforms 

narrow features transform into wide features (and vice-versa) 

T(l,m) V(u,v) amplitude 

δ function constant 
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Example 2D Fourier Transforms 

sharp edges result in many high spatial frequencies 

T(l,m) V(u,v) amplitude 

uniform  

disk 
Bessel 

function 
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Amplitude and Phase 
• amplitude tells “how much” of a certain spatial frequency 

• phase tells “where” this spatial frequency component is located 

V(u,v) amplitude V(u,v) phase T(l,m) 
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The Visibility Concept 

• visibility as a function of baseline coordinates (u,v) is the Fourier transform 

of the sky brightness distribution as a function of the sky coordinates (l,m) 

 

• V(u=0,v=0) is the integral of T(l,m)dldm = total flux density 

 

• since T(l,m) is real, V(-u,-v) = V*(u,v) 

– V(u,v) is Hermitian 

– get two visibilities for one measurement 

10 



The Visibility Concept 
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The Visibility Concept 
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The Visibility Concept 
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The Visibility Concept 
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The Visibility Concept 
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The Visibility Concept 

16 



Aperture Synthesis Basics 

• idea: sample V(u,v) at enough (u,v) points using distributed small aperture 

antennas to synthesize a large aperture antenna of size (umax,vmax) 

 

• one pair of antennas = one baseline                                                                          

                                    = two (u,v) samples at a time 

• N antennas = N(N-1) samples at a time 

• use Earth rotation to fill in (u,v) plane over time 

     (Sir Martin Ryle, 1974 Nobel Prize in Physics)  

• reconfigure physical layout of N antennas for more samples 

• observe at multiple wavelengths for (u,v) plane coverage,  for source 

spectra amenable to simple characterization (“multi-frequency synthesis”) 

 

• if source is variable, then be careful 

Sir Martin Ryle 

1918-1984 
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Examples of Aperture Synthesis 

Telescopes (for Millimeter Wavelengths) 

 

Jansky VLA 

ALMA 

SMA 

CARMA 

IRAM PdBI ATCA 
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An Example of (u,v) plane Sampling 

VEX configuration of 6 SMA antennas, ν = 345 GHz, dec = +22 deg 
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An Example of (u,v) plane Sampling 

EXT configurations of 7 SMA antennas, ν = 345 GHz, dec = +22 deg 
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An Example of (u,v) plane Sampling 

COM configurations of 7 SMA antennas, ν = 345 GHz, dec = +22 deg 
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An Example of (u,v) plane Sampling 

3 configurations of SMA antennas, ν = 345 GHz, dec = +22 deg 

22 



Implications of (u,v) plane Sampling 

• outer boundary 

– no information on smaller scales 

– resolution limit 

• inner hole 

– no information on larger scales 

– extended structures invisible 

• irregular coverage between boundaries 

– sampling theorem violated 

– information missing 

samples of V(u,v) are limited by number of antennas and by Earth-sky geometry 
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Inner and Outer (u,v) Boundaries 

 

V(u,v) amplitude V(u,v) phase T(l,m) 

V(u,v) amplitude V(u,v) phase T(l,m) 
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xkcd.com/26/ 
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Formal Description of Imaging 

• sample Fourier domain at discrete points 

 

• Fourier transform sampled visibility function 

 

• apply the convolution theorem 

 

     where the Fourier transform of the sampling pattern                               is                                  

the “point spread function” 

 

 

 

the Fourier transform of the sampled visibilities yields the true 

sky brightness convolved with the point spread function 

radio jargon: the “dirty image” is the true image convolved with the “dirty beam” 
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Dirty Beam and Dirty Image 

s(l,m) 

“dirty beam” 

S(u,v) 

T(l,m)  TD(l,m) 

“dirty image” 
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Dirty Beam Shape and N Antennas 

2 Antennas, 1 Sample 
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Dirty Beam Shape and N Antennas 

3 Antennas, 1 Sample 
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Dirty Beam Shape and N Antennas 

4 Antennas, 1 Sample 
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Dirty Beam Shape and N Antennas 

5 Antennas, 1 Sample 
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Dirty Beam Shape and N Antennas 

6 Antennas, 1 Sample 
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Dirty Beam Shape and N Antennas 

7 Antennas, 1 Sample 
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Dirty Beam Shape and N Antennas 

7 Antennas, 10 min 
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Dirty Beam Shape and N Antennas 

7 Antennas, 2 x 10 min  
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Dirty Beam Shape and N Antennas 

7 Antennas, 1 hour 
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Dirty Beam Shape and N Antennas 

7 Antennas, 3 hours 
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Dirty Beam Shape and N Antennas 

7 Antennas, 8 hours 
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Calibrated Visibilities: What’s Next? 

• analyze directly V(u,v) samples by model fitting 

– good for simple structures, e.g. point sources, symmetric disks 

– sometimes for statistical descriptions of sky brightness 

– visibilities have very well defined noise properties 

 

• recover an image from the observed incomplete and noisy 

samples of its Fourier transform for analysis 

– Fourier transform V(u,v) to get TD(l,m) 

– difficult to do science with the dirty image TD(l,m) 

– deconvolve s(l,m) from TD(l,m) to determine a model of T(l,m) 

– work with the model of T(l,m) 
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Some Details of the Dirty Image 

• “Fourier transform” 

– Fast Fourier Transform (FFT) algorithm is much faster than simple  

Fourier summation, O(NlogN) for 2N x 2N image 

– FFT requires data on a regularly spaced grid 

– aperture synthesis does not provide V(u,v) on a regularly spaced grid, so… 

 

• “gridding” used to resample V(u,v) for FFT 

– customary to use a convolution method 

– special (“spheroidal”) functions 

    that minimize smoothing and aliasing 
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Antenna Primary Beam Response 

• antenna response A(l,m) is not    

uniform across the entire sky 

– main lobe = “primary beam”          

fwhm ~ λ/D 

– response beyond primary beam 

can be important (“sidelobes”)   

 

• antenna beam modifies the sky 

brightness distribution 

– T(l,m)   T(l,m)A(l,m) 

– can correct with division by   

A(l,m) in the image plane 

– large source extents require 

multiple pointings of antennas        

= mosaicking 

A(l,m) 

T(l,m) 

SMA 6 m  

345 GHz 
ALMA 12 m  

690 GHz 

D 
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Imaging Decisions: Pixel Size, Image Size 

• pixel size 

– satisfy sampling theorem for longest baselines 

 

 

– in practice, 3 to 5 pixels across main lobe of dirty beam to aid deconvolution 

– e.g. at 870 μm with baselines to 500 meters   pixel size < 0.1 arcsec 

– CASA “cell” size 

• image size 

– natural choice is often the full extent of the primary beam A(l,m) 

– e.g. SMA at 870 μm, 6 meter antennas   image size 2 x 35 arcsec 

– if there are bright sources in the sidelobes of A(l,m), then the FFT will alias 

them into the image  make a larger image (or equivalent) 

– CASA “imsize” 
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Imaging Decisions: Visibility Weighting 

• introduce weighting function W(u,v) 

– modifies sampling function 

– S(u,v)  S(u,v)W(u,v) 

– changes s(l,m), the dirty beam shape 

 

• natural weight 

– W(u,v) = 1/σ2 in occupied (u.v) cells, 

where σ2 is the noise variance, and 

W(u,v) = 0 everywhere else 

– maximizes point source sensitivity 

– lowest rms in image 

– generally gives more weight to short 

baselines (low spatial frequencies), so 

angular resolution is degraded 
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Dirty Beam Shape and  Weighting 

• uniform weight 

– W(u,v) is inversely proportional to 

local density of (u,v) points 

– sum of weights in a (u,v) cell = const 

(and 0 for empty cells) 

– fills (u,v) plane more uniformly and 

dirty beam sidelobes are lower 

– gives more weight to long baselines 

(high spatial frequencies), so angular 

resolution is enhanced 

– downweights some data, so point 

source sensitivity is degraded 

– can be trouble with sparse sampling: 

cells with few data points have same 

weight as cells with many data points 
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Dirty Beam Shape and  Weighting 

• robust (Briggs) weight 

– variant of uniform that avoids giving 

too much weight to (u.v) cells with 

low natural weight 

– software implementations differ 

–  e.g. 

 

    SN is natural weight of cell  

    Sthresh is a threshold 

    high threshold  natural weight 

    low threshold  uniform weight 

• an adjustable parameter allows for 

continuous variation between maximum 

point source sensitivity and resolution 
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Dirty Beam Shape and  Weighting 

• tapering 

– apodize (u,v) sampling by a Gaussian 

 

     

     t = adjustable tapering parameter 

– like smoothing in the image plane 

(convolution by a Gaussian) 

– gives more weight to short baselines, 

degrades angular resolution 

– downweights some data, so point 

source source sensivitity degraded 

– may improve sensitivity to extended 

structure sampled by short baselines 

– limits to usefulness 
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natural 

+ taper to 

1.5x1.5 

 

rms=1.4 

robust=0 

+ taper to 

0.59x0.50 

 

rms=1.2 

Weighting and Tapering: Image Noise 

natural 

0.59x0.50 

 

rms=1.0 

uniform 

0.35x0.30 

 

rms=2.1 

robust=0 

0.40x0.34 

 

rms=1.3 
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Weighting and Tapering: Summary 

• imaging parameters provide a lot of freedom 

• appropriate choices depend on science goals 

Robust/Uniform Natural Taper 

resolution higher medium lower 

sidelobes lower higher depends 

point source 

sensitivity 

lower maximum lower 

extended source 

sensitivity 

lower medium higher 
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Beyond the Dirty Image: Deconvolution 

• to keep you awake at night 

–  an infinite number of T(l,m) compatible with sampled V(u,v),              

with “invisible” distributions R(l,m) where s(l,m) * R(l,m) = 0  

• no data beyond umax,vmax        unresolved structure 

• no data within umin,vmin            limit on largest size scale 

• holes in between                  synthesized beam sidelobes 

– noise  undetected/corrupted structure in T(l,m) 

– no unique prescription for extracting optimum estimate of T(l,m) 

 

• deconvolution   

– uses non-linear techniques to interpolate/extrapolate samples of     

V(u,v) into unsampled regions of the (u,v) plane 

– aims to find a sensible model of T(l,m) compatible with data 

– requires a priori assumptions about T(l,m) to pick plausible “invisible” 

distributions to fill unmeasured parts of the Fourier plane 
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Deconvolution Algorithms 

• an active research area, e.g. compressive sensing methods 

 

• clean: dominant deconvolution algorithm in radio astronomy 

– a priori assumption: T(l,m) is a collection of point sources 

– fit and subtract the synthesized beam iteratively 

– original version by Högbom (1974) purely image based 

– variants developed for higher computational efficiency, model visibility 

subtraction, to deal better with extended emission structure, etc. 

 

• maximum entropy: a rarely used alternative 

– a priori assumption: T(l,m) is smooth and positive 

– define “smoothness” via a mathematical expression for entropy, e.g.        

Gull and Skilling (1983), find smoothest image consistent with data 

– vast literature about the deep meaning of entropy as information content 
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Basic clean Algorithm 

• initialize 

a residual map to the dirty map 

a Clean Component list 

 

1. identify the highest peak in the 

residual map as a point source 

2. subtract a fraction of this peak 

from the residual map using a 

scaled dirty beam, s(l,m) x gain 

3. add this point source location    

and amplitude to the Clean 

Component list 

4. goto step 1 (an iteration) unless 

stopping criterion reached 

 

s(l,m) 

TD(l,m) 
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Basic clean Algorithm (continued) 

• stopping criteria? 

– residual map maximum < threshold = multiple of rms (if noise limited) 

– residual map maximum < threshold = fraction of dirty map maximum 

(if dynamic range limited) 

– maximum number of Clean Components reached (no justification) 

• loop gain? 

– good results for g=0.1 to 0.3 

– lower values can work better for smoother emission, g=0.05 

• easy to include a priori information about where in dirty map to search 

for Clean Components (using “boxes” or “masks”) 

– very useful but potentially dangerous 

 

• Schwarz (1978) showed that the clean algorithm is equivalent to a least 

squares fit of sinusoids to visibilities in the case of no noise 
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Basic clean Algorithm (continued) 

• last step: make “restored” image 

– make a model image with all point source Clean Components  

– convolve point sources with an elliptical Gaussian, fit to the main lobe of 

the dirty beam (“clean beam”); avoids super-resolution of model  

– add residual map of noise and source structure below the threshold  

• resulting restored image is an estimate of the true sky brightness T(l,m) 

• units of the restored image are (mostly) Jy per clean beam area                                                         

                                                           = intensity (or brightness temperature) 

 

• for most weighting schemes, there is information in the image from baselines 

that sample high spatial frequencies within the clean beam fwhm, so modest 

super-resolution may be OK 

 

• the restored image does not actually fit the observed visibilities 
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clean Example 

 TD(l,m) 0 Clean Components residual map 
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clean Example 

 TD(l,m) 30 Clean Components residual map 
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clean Example 

 TD(l,m) 100 Clean Components residual map 
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clean Example 

 TD(l,m) 300 Clean Components residual map 
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clean Example 

 TD(l,m) 583 Clean Components residual map 
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clean Example 

final image depends on  

    imaging parameters (pixel size, visibility weighting scheme, gridding) 

and deconvolution (algorithm, iterations, masks, stopping criteria) 

 TD(l,m) restored image 

ellipse = clean beam fwhm 
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CASA clean filename extensions 

• <imagename>.image 

– final clean image (or dirty image if niter=0) 

• <imagename>.psf 

– point spread function (= dirty beam) 

• <imagename>.model 

– image of clean components 

• <imagename>.residual 

– residual after subtracting clean components 

    (use to decide whether or not to continue clean) 

• <imagename>.flux 

– relative sensitivity on the sky 

– pbcor = True divides .image by .flux 
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Results from Different Weighting Schemes 

 natural 

0.59x0.50 

robust=0 

0.40x0.34 

 uniform 

0.35x0.30 

natural 

+ taper to 

1.5x1.5 
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Tune Resolution/Sensitivity to suit Science 

• example: SMA 870 μm images of protoplanetary disk dust continuum 

emission with resolved inner cavities (Andrews et al. 2009, ApJ, 700, 1502) 

5
0

0
 A

U
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Scale Sensitive Deconvolution Algorithms 

• basic clean (or Maximum Entropy) is scale-free and treats each pixel as an 

independent degree of freedom: no concept of source size 

 

• adjacent pixels in an image are not independent  

• an extended source covering 1000 pixels might be characterized by just   

a few parameters, not 1000 paramters (e.g. an elliptical Gaussian with 6 

parameters: x, y, amp, major fwhm, minor fwhm, position angle) 

• scale sensitive deconvolution algorithms try to employ fewer degrees of 

freedom to model plausible sky brightness distributions 

 

• MS Clean (Multi-Scale Clean) 

• Adaptive Scale Pixel (Asp) Clean 

 

• yields promising results on extended emission 
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“Invisible” Large Scale Structure 

• missing short spacings can be problematic for large scale structure 

• to estimate? simulate observations, or check simple expressions for a 

Gaussian or unform disk (appendix of Wilner & Welch 1994, ApJ, 427, 898) 

 

 

Homework Problem 

• Q: By what factor is the central brightness reduced as a function of source 

size due to missing short spacings for a Gaussian characterized by fwhm θ1/2 ? 

 

• A:  a Gaussian source central brightness is reduced 50% when 

 

 

 

           where Bmin is the shortest baseline [meters], υ is the frequency [GHz] 
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Missing Short Spacings: Demonstration 

• important structure may be missed in central hole of (u,v) coverage 

 

• Do the visibilities observed in our example discriminate between these two 

models of the sky brightness distribution T(l,m)? 

 

 

 

 

 

 

 

• Yes… but only on baselines shorter than about 75 kλ 
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Missing Short Spacings: Demonstration 
T(l,m) 
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natural weight > 75 kλ natural weight 



Measures of Image Quality 

• dynamic range 

– ratio of peak brightness to rms noise in                                                  

a region void of emission 

– easy way to calculate a lower limit to the                                                   

error in brightness in a non-empty region 

– e.g. peak = 89 mJy/beam, rms = 0.9 mJy/beam 

              DR = 89/0.9 = 99 

 

• fidelity  

– difference between any produced image and the correct image 

– fidelity image = input model / difference 

                        = model * beam / abs(model * beam – reconstruction) 

                        = inverse of the relative error 

– need knowledge of the correct image to calculate 
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Techniques to Obtain Short Spacings 

use a large single dish telescope 

 

 

 

 

• all Fourier components from 0 to D sampled, where D is dish diameter 

(weighting depends on illumination) 

• scan single dish across sky to make an image T(l,m) * A(l,m) 

        where A(l,m) is the single dish response pattern 

• Fourier transform single dish image, T(l,m) * A(l,m), to get V(u,v)a(u,v) 

        and then divide by a(u,v) to estimate V(u,v) for baselines < D 

• choose D large enough to overlap interferometer samples of V(u,v)                           

         and avoid using data where a(u,v) becomes small, e.g. VLA & GBT 

density of 

(u,v) points 

(u2 + v2)1/2 

68 



Techniques to Obtain Short Spacings 

use a separate array of smaller antennas 

 

• small antennas can observe short baselines inaccessible to larger ones 

• the larger antennas can be used as single dish telescopes to make images 

with Fourier components not accessible to the smaller antennas 

• example: ALMA main array + ACA 

main array 

50 x 12m: 12m to 14+ km 

 

ACA 

12 x 7m: covers 7-12m 

4 x 12m single dishes: 0-7m 
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Techniques to Obtain Short Spacings 

mosaic with a homogeneous array 

• recover a range of spatial frequencies around the nominal baseline b using 

knowledge of A(l,m), shortest spacings from single dishes (Ekers & Rots 1979) 

 

 

 

 

• V(u,v) is a linear combination of baselines from b-D to b+D 

• depends on pointing direction (l0,m0) as well as on (u,v) 

 

 

• Fourier transform with respect to pointing direction (l0,m0)   
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Self Calibration 

• a priori calibration using external calibrators is not perfect 

– interpolated from different time, different sky direction from source 

• basic idea of self calibration is to correct for antenna based phase and 

amplitude errors together with imaging to create a source model 

• works because 

– at each time, measure N complex gains and N(N-1)/2 visibilities 

– source structure can be represented by a small number of parameters 

– a highly overconstrained problem if N large and source simple 

• in practice, an iterative, non-linear relaxation process 

– assume source model  solve for time dependent gains  form new 

source model from corrected data using e.g. clean  solve for new gains 

– requires sufficient signal-to-noise at each solution interval 

• loses absolute phase from calibrators and therefore position information 

• dangerous with small N arrays, complex sources, marginal signal-to-noise 
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Concluding Remarks 

• interferometry samples Fourier components of sky brightness 

• make an image by Fourier transforming sampled visibilities  

• deconvolution attempts to correct for incomplete sampling 

 

• remember  

– there are an infinite number of images compatible with the visibilities 

– missing (or corrrupted) visibilities affect the entire image 

• astronomers must use judgement in the imaging and deconvolution process 

• it’s fun and worth the trouble   high angular resolution images! 

 

 many, many issues not covered in this talk: see References and upcoming talks 
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END 
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