Proposing for the GBT

David Frayer (NRAO)

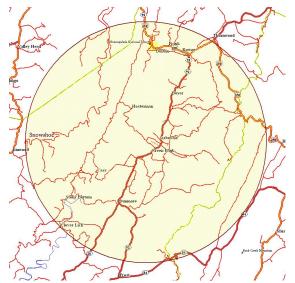
Green Bank, WV is original the NRAO site

Started 1958 Completed 1959 Completed 1965

Completed

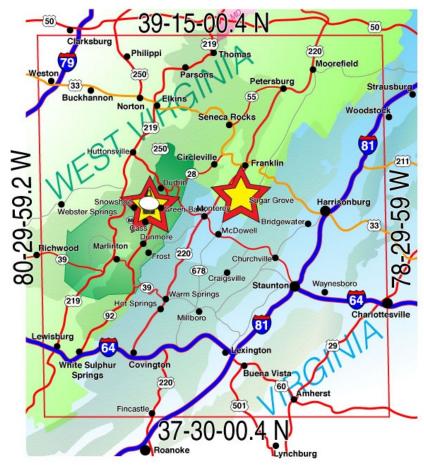
1994

GBT: Completed 2000, surface improved for highfrequency in 2009 Completed 1962


Completed 1962,

collapsed 1988

Completed 1967


Site protected from Radio interference

WV Radio Astronomy Zone Established by the West Virginia Legislature (1956)

Protection within ten miles of the Observatory

National Radio Quiet Zone Established by the FCC and NTIA (1957)

13,000 Square Miles

At 100 m, the GBT is the largest fully steerable in the world.

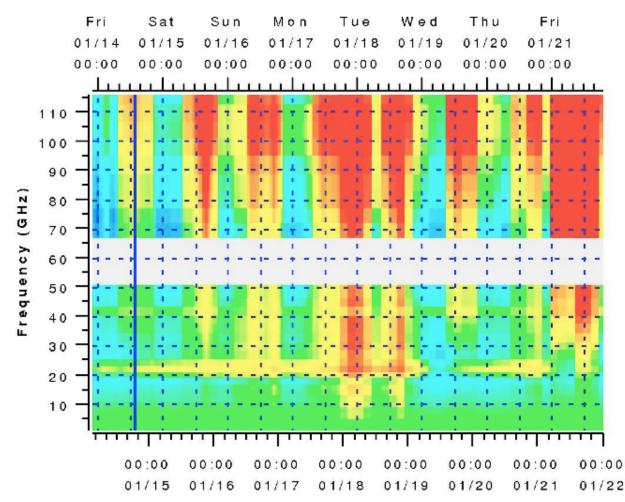
151 ft

◆ Unblocked Aperture
◆ Active Surface
◆ Operates from ~100 MHz to 100 GHz
◆ Fully Steerable
◆ >85% of total sky covered δ≥-46°
◆ Pointing to 1"-2" accuracy
◆ Surface good for 3mm work

2.3 acre collecting area

The Active Surface 2209 actuators

Currently rms ~240µm at night, the goal is ~200µm


Makes the GBT the largest single-dish operating efficiently at 3mm in the world

Some Key GBT Science Areas:

- Pulsars: Discovery of new pulsars, the most massive pulsar, gravity waves via pulsar timing
- Neutral Hydrogen HI: Masses of local galaxies, Kinematics of galaxy and local group/dark matter
- High-redshift/Cosmology: Galaxy clusters, CO in the early universe, HI intensity mapping at high-redshift
- Interstellar Organic Molecules/Astro-chemisty
- Masers: black hole masses, distances via proper motions and independent measurement of Ho
- Star Formation: NH3 mapping, cold and dense gas tracers at 4mm
- Basic Physics: The search for Gravitational Radiation, Limits on Fundamental "constants"
- Solar system astronomy -- planetary radar

Dynamical Scheduling System allows efficient use of telescope at high frequency – based on weather model predictions that are updated every 6 hrs.

Local Date and Time

Telescope dynamically scheduled daily based on weather conditions and receiver and observer availability. Dynamic Scheduling matches the project to the weather

6500+ hours a year scheduled for astronomy

In 2010 there were 1776 hours used at frequencies above 18 GHz

UT Date and Time

7

GBT Astronomer's Web-page ("Practical Information for Astronomers")

- Call for Proposals
- GBT proposal
 Guide
- Proposal
 Submission Tool (PST)
- Sensitivity calculator

Heip Desk

Practical

People

Information for

Astronomers

Publications

Other Green

Interference

Weather Forecast

Bank Telescopes

- Mapping Planner
- Known RFI .

NRAC

Home	About		ence	Facilities	Ohse	Ť	all of NR/ G
			ence	Facilities	- Obse		pporcunicie
LMA/NAASC							
Facilities > GBT >	Practical Inform	nation For Astronome	rs				
The Creen	Pank	Practical II	nformati	on For /	stronon	hers	
The Green	Bank	riactical fi	mormati		Scionon	leis	
Site							
In the New	_	Proposing				Single Dis	h Radio
	2	on the GBT	Observing	<u>Helpdesk</u>	<u>Schedules</u>	Astronom	A SCALE AND A
GBT Science	e					4	
		Data	Finan dial	Calantific	V:-:+		
GBT		Reduction	<u>Financial</u> Support	<u>Scientific</u> Info	VISILOF	Observer	Alerts!
Developme	nt	and Archive					
Program							

- General Proposal Information describes the proposal evaluation and time allocation process. Starting February 2011, the NRAO's uses an Observatory-wide panel system that is no longer telescope based, that depends on community members for scientific evaluation, and the NRAO staff for technical reviews only.
- **Practical GBT Information and Proposer's Guide** updated prior to each proposal deadline, provides essential information for the preparation of proposals, including a detailed description of the submission process, instrument status, observing modes, and staff contacts.

Proposal Submission Tool for the GBT, EVLA, and VLBA telescopes.

Sensitivity Calculator, an on-line tool for calculating the the time required for science on the GBT.

Mapping Planner, an online tool to plan on-the-fly mapping

Known Sources of Radio Frequency Interference shows recent observations of the local, very helpful when planning observations.

GBT Proposal Guide (updated with each proposal call)

News for 14B: > VEGAS replaces the GBT spectrometer and spectral processor

- C-band upgrade to cover
 3.95-8 GHz frequency range
 (shared-risk)
- Mustang 1.5 will be upgraded (shared-risk)

The Proposer's Guide for the Green Bank Telescope

GBT Support Staff

December 19, 2013

This guide provides essential information for the preparation of observing proposals on the Green Bank Telescope (GBT). The information covers the facilities that will be offered in **Semester 14B**.

Available GBT receivers for I4B

Table 1: GBT Receivers

Receiver	Frequency Range
PF1	290-920 MHz
PF2	910-1230 MHz
L	1.15-1.73 GHz
S	1.73-2.60 GHz
C (shared risk)	3.8-8.0 GHz
X	8.0-12.0
Ku	12.0-15.4 GHz
KFPA - seven pixel array	18.0-26.0 GHz
Ka	26.0-39.5 GHz
Q	38.2-49.8 GHz
W	67-93.3 GHz
MBA1.5 - Bolometer Array(shared risk)	80-100 GHz

Available GBT Backends for 14B

Table 2: GBT Backends

Backend	Observing Modes
VEGAS	Continuum, pulsar, spectral line
DCR	Continuum
Guppi	Pulsar
Mark Vc	VLBI
ССВ	Continuum (Ka-band)
Zpectrometer	Private PI instrument – contact the <u>NRAO</u> helpdesk for further information (Ka-band)
Radar	Private PI instrument – contact the <u>NRAO</u> helpdesk for further information

. .

Fill in Technical Justification Boxes

<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmark		
Results from the Mapping C 💥		
https://webtest.aoc.nrao.edu	ı/nrao-2.0/secure/TechJustificationPage.htm	☆ ✔ 🔊 🚱 / to move window to another screen 🔍 {
National Radio	Astronomy Observatory	
Dashboard Proposals	Reviews Data Processi Obs Prep Helpdesk Profile	Hi, David Sign Out
My Proposals Available	Authors Available Organizations	Tuesday 31 December 2013
Validate Print Submit		Save Help
	TECHNICAL JUSTIFICATION	« < Technical Justification > »
Options	GBT Technical Justification	
My Proposals	Use this page to specify how the technical set-up requested for your proposal enables the science is not relevant for your proposal then enter "NA" into the textbox. The links within each box pro-	
Authors Science Justification Technical Justification Sources Resources Sessions	For each resource briefly justify the observing mode and all values used in determining the required observing time (e.g. frequency switching or position switching, bandwidth, spectral resolution, polarization, etc.). Include all inputs and results for the GBT sensitivity calculator. IF the sensitivity calculator is not used then provide all equations, with each term defined, along with the values used. If a specific documented instrument sensitivity is used then provide the reference for the value used.	Observing modes and
Print Preview	https://dss.gb.nrao.edu/calculator-ui/war/Calculator_ui.html	sensitivity level
	For any session that uses mapping present all inputs and results from GBT mapping planner. If the mapping planner is not used then profide all equations, with each term defined, along with the values used. The sensitivity calculator observing time results are for a sensitivity per beam. To calculate time per pixel simply divide the time per beam by the number of pixels per beam.	Mapping details
	http://www.gb.nrao.edu/GBT/setups/mapplan.html	
	For each resource, briefly discuss the potential impact of RFI and how it would be handled during the observations and during data reduction:	RFI issues
	For each session, discuss the amount of overhead time needed and how that value was derived (e.g. receiver change time, slew time, time for pointing and focusing, time for AutoOOF, calibration observations, etc.):	Overheads
	https://science.nrao.edu/facilities/gbt/proposing/GBTpg.pdf (Section 6)	
	If your proposal contains novel observing or data reduction techniques please provide details on the techniques to be used:	Non-standard techniques
	Pulsar proposals should list the information such as the spin period, dispersions measure, binary period, average flux, etc. for any known pulsar:	Pulsar information

Where to find information needed for "Technical Justification Boxes":

- I) Observing modes and sensitivity level: inputs and results of sensitivity calculator
- 2) Mapping details: Mapping Calculator web page
- 3) RFI issues: RFI web pages, if needed
- 4) Overheads: Section 6 of GBT proposers guide
- 5) Non-standard techniques: staff/experts, if needed
- 6) Pulsar information: pulsar experts, if needed

GBT Sensitivity Calculator/Time Estimator

GBT Sensitivity Calculator also useful for verifying available modes (number of beams, polarization, spectral windows)

Input sensitivity needed, results of observing time required, setup and observing mode(s) in the Technical Justification boxes of the PST

https://dss.gb. nrao.edu /cal	lculator-ui/war/Calculator_ui.html		े 🗸 🛃 🛃 Google	
elp Desk Users Guide				
Sensitivity Calculator				
General Information		Controls		
Derive:	 Observing Time from Desired Sensi 	Update Re: Save	e to l	
	 Sensitivity from Observing Time 	Results Result Grids		
Sensitivity Units:	• Flux Density (mJy)	Results		
	 ○ Antenna Temp., Ta (mK) ○ Main Dears Temp. Table (mK) 			
	 Main Beam Temp., Tmb (mK) Radiation Temp., Tr (mK) 	Derived Total Observing Time:	00:34:24.6	
Desired Sensitivity			HH:MM:SS.S	
(1-sigma):	1.0	Time at Siginal Position or Frequency:	00:17:12.3 s	
		Time at Reference Position or	00:17:12.3 s	
lardware Information		r requeriey.		
Answer questions from tor	o to bottom. If you change a question	Effective Integration Time:	00:08:36.1 s	
that was answered previou	isly, check all answers that follow.	Obs. Mode Time Mult. Factor:	4	
	the answer for other questions.	FWHM Beamwidth:	0.14 '	
	Spectral Line	Aperture Efficiency:	0.31	
		Extended Source Efficiency:	0.31	
		Confusion Limit:	0.00 S (mJy)	
Beams:		# Hrs Above Min Elevation:	6.71 hours	
Polarization:	Dual	Topocentric Frequency:	88631.000 MHz	
BandWidth (MHz):	1250	Min. Topocentric Channel Width:	88.000 kHz	
Number of Spectral		Desired Freq. or Vel. Resolution:	50.000000 MHz or km/s	
Windows:				
Switching Mode:	Nodding between bean 🗸 🗸	Typical Air Mass:	1.6	
ource Information		Typical Atmospheric Attenuation:	1.221	
ourse information		Typical System Temperature:	123.8 K	
Frequency Specified in		Backend Sampling Efficiency (K1):	1.0000	
	Rest Frame	Backend Channel Weighting (K2):	1.0000	
Rest Frequency (MHz):	88631		NUTURS CONTROLOU	
Doppler Correction:	Optical	Other Resul	ts	
Source Velocity (km/s):	0		F1 0 -	

Maximum Elevation:

Dulaar Fastar /huu / aff huu + da //100 0

51.6 d

GBT Mapping Calculator

Input:

- Backend
- Map Type (OTF, point)
- Frequency
- Integration time per beam
- Map Size (or radius)
- Sampling (with respect to Nyquist)

Output:

- Observing time (including overheads)
- Astrid command to carry out observation
- Any warnings (e.g., too many accelerations per minute)

GBT Mapping Calculator

Last Modified: December 6, 2013 Ronald J Maddalena

Calculates the time needed to map,an area including overhead, based on the integration time per beam area (e.g., the results from the <u>Sensitivity Calculator</u>) and the area to be mapped. Provides example ASTRID commands as well as other mapping parameters. Supports the typical mapping commands for on-the-fly (OTF) rectangular maps, OTF Daisy maps, and point rectangular maps.

Input V	Values
---------	--------

Instructions

along rows of the map

(i.e., RALongMap) or

along columns

Backend and Mode Used by the calculator to provide values for the **Default Spectral Line** \$ minimum time resolution and minimum sampling time. If you don't know what to select here, try 'DCR' for continuum observations and 'Default Spectral Line' for spectral line observations. Map Type The type of map. Either: OTF Rectangle **OOTF** Daisy **OTF** Rectangle: ○Point Rectangule On-the-fly mapping of a rectangular area. The OTF motion is either

Radio Frequency Interference (RFI)

👰 National Radio Astronomy Observatory

NRAO Green Bank > RFI Protection Group > GBT RFI Archives

GBT Radio Frequency Interference

- Introduction
- GBT Receiver Plots by Band
- GBT RFI Monitoring Station Plots by Band
- Older Surveys and Band Summaries
- Known Sources Database

Introduction

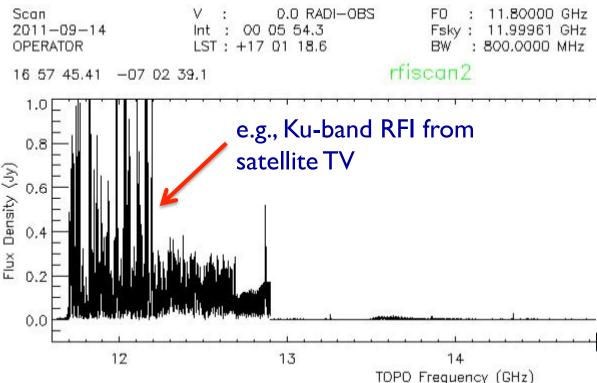
primary tools to observers for the purposes of RFI avoidance and mitigation. One of these tools is an archive of RFI scans which will give the observer an idea of spectral ociseen by the GBT receivers themselves, and (eventually) from the GBT RFI Monite (pictured right).

The Green Bank Radio Frequency Interference (RFI) Protection Group would like to offer two

The second, still under construction, will be a RFI Database which provides details persistent, identified RFI sources including coordination information where applica now, we have a <u>Table of Known RFI Sources</u> and a number of <u>Older Surveys and Summaries</u> linked below.

To maximize your chances of RFI avoidance, we advise the following:

1) Consult the latest GBT RFI plots to determine whether the spectrum you wish to typically clear, or occupied by RFI.

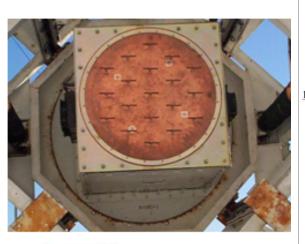

Consult the <u>Table of Known RFI Sources</u> and/or the <u>Surveys and Band Summa</u> determine whether the source of the RFI is well known and/or likely to be somethin coordinate with (broadcast television, for instance, isn't going to coordinate with us
 Contact a member of the Green Bank RFI Group to determine whether coordinate possible. If it is, you will need to obtain a fixed window from the dynamic schedulin your observation, and the RFI group can then arrange coordination.

Usually, by the time RFI is experienced during observation, it is too late to do anyt it, but it is still worth reporting, in case it can be mitigated in advance of future obse

For additional information email interference@nrao.edu.

GBT "Resources" (Receiver and Backend configuration)

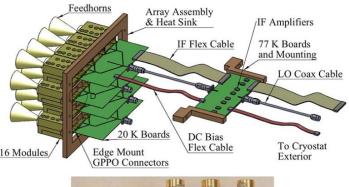
<u>File Edit View History Bookr</u>	marks <u>T</u> ools <u>H</u> elp					
NRAO: Proposals	+					
🖕 🔒 https://webtest.aoc. nra	o.edu/nrao-2.0/secure/GBTResourc	cesPage.htm		ి 🖉 😫	✓ Google	۾ 😭
National Rad	lio Astronomy Obse	ervatory				
Dashboard Proposals	Reviews Data Processi	ing Obs Prep He	elpdesk Profile		Hi, Dav	vid Sign Out
My Proposals Available A	Authors Available Organizations				Monday	30 December 2013
Valdate Pitrit Submit	GBT RESOURCES			Co	py Resources New Resourc	e Group Help
Options	Mygalaxy-wband				No Sessions	up / down
My Proposals GBT/2013-04-007 General	Order		Name	Receiver	Back End	
Authors		Wba	and	W-band MM4 (85-93	▼ VEGAS	
Technical Justification	Observing Type:	Spectral Line	e 🗾			
	Number of Beams: Number of Vegas Spectromet	ers: 4 - Spectrometer 1	Spectrometer 2	Spectrometer 3	Spectrometer 4	
D Sessions		ers: 4 - Spectrometer 1		a second a second se		
D Sessions	Number of Vegas Spectromet	ers: 4 -	Spectrometer 2	Spectrometer 3	Spectrometer 4	
D Sessions	Number of Vegas Spectromet	spectrometer 1	2 -	2 _	2 -	
D Sessions	Number of Vegas Spectrometro Mode: Bandwidth (MHz)	ers: 4 • Spectrometer 1 2 • 1250.000	2 1250.000	2 <u>1250.000</u>	2 1250.000	Save
D Sessions	Number of Vegas Spectrometro Mode: Bandwidth (MHz) Rest Frequencies (GHz):	Spectrometer 1 2 1250.000 88.63	2 1250.000 88.63 92 2.0000	2 1250.000 89.19	2 1250.000 89.19 92 2.0000	
D Sessions	Number of Vegas Spectrometry Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz):	ers: 4 • Spectrometer 1 2 • 1250.000 88.63 92 2.0000 5): 0.125	2 1250.000 88.63 92 2.0000 0.125	2 1250.000 89.19 92 2.0000 0.125	2 1250.000 89.19 92 2.0000 0.125	Delete
D Sessions	Number of Vegas Spectrometer Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz): Integration Time (s): Data Rate per Spectrometer (MB/s	ers: 4 - Spectrometer 1 2 - 1250.000 88.63 92 2.0000 5) 0.125 Spectrometer 5	2 1250.000 88.63 92 2.0000 0.125 Spectrometer 6	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 7	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 8	Delete
Data rates of	Number of Vegas Spectrometer Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz): Integration Time (s): Data Rate per Spectrometer (MB/s Mode:	ers: 4 • Spectrometer 1 2 • 1250.000 88.63 92 2.0000 5): 0.125	2 1250.000 88.63 92 2.0000 0.125	2 1250.000 89.19 92 2.0000 0.125	2 1250.000 89.19 92 2.0000 0.125	Delete
Data rates of more than 60	Number of Vegas Spectrometer Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz): Integration Time (s): Data Rate per Spectrometer (MB/s Mode: Bandwidth (MHz)	ers: 4 - Spectrometer 1 2 - 1250.000 88.63 92 2.0000 5) 0.125 Spectrometer 5	2 1250.000 88.63 92 2.0000 0.125 Spectrometer 6	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 7	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 8	Delete
Data rates of	Number of Vegas Spectrometer Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz): Integration Time (s): Data Rate per Spectrometer (MB/s Mode:	ers: 4 - Spectrometer 1 2 - 1250.000 88.63 92 2.0000 5) 0.125 Spectrometer 5	2 1250.000 88.63 92 2.0000 0.125 Spectrometer 6	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 7	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 8	Delete
Data rates of more than 60 MB/s need	Number of Vegas Spectrometor Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz): Integration Time (s): Data Rate per Spectrometer (MB/s Mode: Bandwidth (MHz) Rest Frequencies (GHz):	ers: 4 - Spectrometer 1 2 - 1250.000 88.63 92 2.0000 5) 0.125 Spectrometer 5	2 1250.000 88.63 92 2.0000 0.125 Spectrometer 6	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 7	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 8	Delete
Data rates of more than 60	Number of Vegas Spectrometer Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz): Integration Time (s): Data Rate per Spectrometer (MB/s Mode: Bandwidth (MHz) Rest Frequencies (GHz): Spectral Resolution (KHz):	ers: 4 - Spectrometer 1 2 - 1250.000 88.63 92 2.0000 0.125 0.125 Spectrometer 5 -	2 1250.000 88.63 92 2.0000 0.125 Spectrometer 6	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 7	2 1250.000 89.19 92 2.0000 0.125 Spectrometer 8	Delete

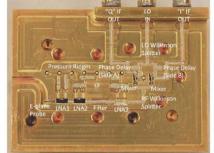

VEGAS: the new GBT backend

1	1						
Eight separate				Bandwidth per	Number of Channels	Approximate Spectral	
spectrometers	Mode	Oberving	Spectral Windows	Spectrometer	per	Resolution	
•		Type	per Spectrometer	(MHz)	Spectrometer	(kHz)	
that can be	1	Continuum	1	1250	1024	1465	
divided between	1	Pulsar	1	1250	1024	1465	
unded Detween	1	Spectral Line	1	1250	1024	1465	
beams and	2	Spectral Line	1	1250	16384	92	
	3	Spectral Line	1	850	16384	61	
different	4	Spectral Line	1	187.5	32768	5.7	
· · ·	5	Spectral Line	1	187.5	65536	2.9	
frequencies as	6	Spectral Line	1	187.5	131072	1.4	
needed and can	7	Spectral Line	1	100	32768	3.1	
needed and Call	$\frac{8}{9}$	Spectral Line	1	$\frac{100}{100}$	$65536 \\ 131072$	1.5 0.8	
support up to 8	9 10	Spectral Line	1	23.44	32768	0.8	
	10	Spectral Line Spectral Line	1	23.44 23.44	65536	0.4	
spectral	11 12	Spectral Line	1	23.44 23.44	131072	$0.4 \\ 0.2$	
•	12 13	Spectral Line	1	23.44 23.44	262144	0.2	
windows per	13	Spectral Line	1	23.44 23.44	524288	0.05	
spectrometer	15	Spectral Line	1	11.72	32768	0.4	
spectrometer.	16	Spectral Line	$\overline{1}$	11.72	65536	0.2	
Could configure with	17	Spectral Line	1	11.72	131072	0.1	
very large data rates,	18	Spectral Line	1	11.72	262144	0.05	
but most projects at	19	Spectral Line	1	11.72	524288	0.02	
	20	Spectral Line	8	23.44	4096	5.7	
<imb (~30mb="" for<="" s="" th=""><th>21</th><th>Spectral Line</th><th>8</th><th>23.44</th><th>8192</th><th>2.9</th></imb>	21	Spectral Line	8	23.44	8192	2.9	
pulsars), >60MB/s need	22	Spectral Line	8	23.44	16384	1.4	
to justify.	23	Spectral Line	8	23.44	32768	0.7	
* *	24	Spectral Line	8	23.44	65536	0.4	
	25	Spectral Line	8	15.625	4096	3.8	
	26	Spectral Line	8	15.625	8192	1.9	
	27	Spectral Line	8	15.625	16384	0.95	
NRAO	28	Spectral Line	8	15.625	32768	0.48	
l	29	Spectral Line	8	15.625	65536	0.24	

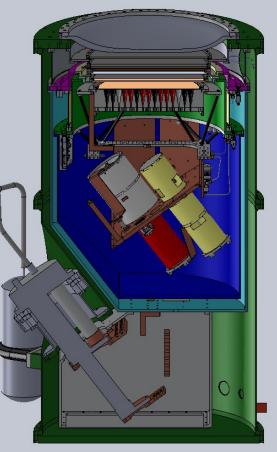
Instruments in Development

FLAG


19-element phased-array feed [PAF] (7beams) at 21cm (2014/2015) BYU/NRAO. Planned future 37element PAF (20beams).



NRAC


16 element scalable 75-115 GHz FPA (2014) Stanford/CIT-JPL/UMd/Miami/ NRAO (similar mapping speeds to ALMA)

Mustang-1.5 (2013) & Mustang-2 (2015) [Upenn/ NRAO] (10x mapping speed of ALMA)

3mm bolometer camera

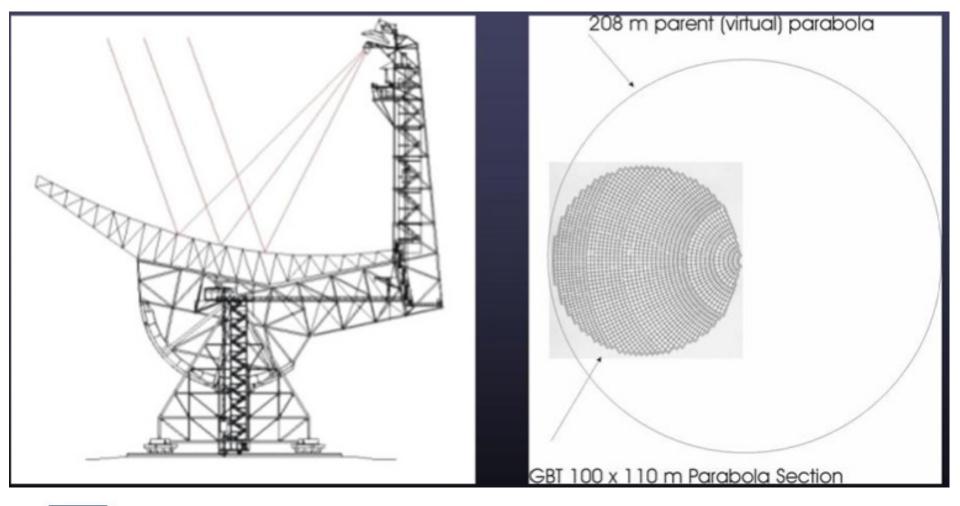
New 3mm instruments will map faster than ALMA

Proposing with the GBT: Summary

- VEGAS is a new backend that replaces the current spectrometer for 14B
- The GBT is a powerful instrument single-dish flexibility, large collecting area, wide-frequency coverage
- Development ongoing to enhance the capabilities of the GBT well into the future (higher frequency coverage, multi-pixel receivers, flexible spectrometers the NSF is funding 5 instrumentation programs for the GBT involving many universities while planning for the telescope's "divestment")
- The GBT can provide key short-spacing data for several VLA and ALMA programs

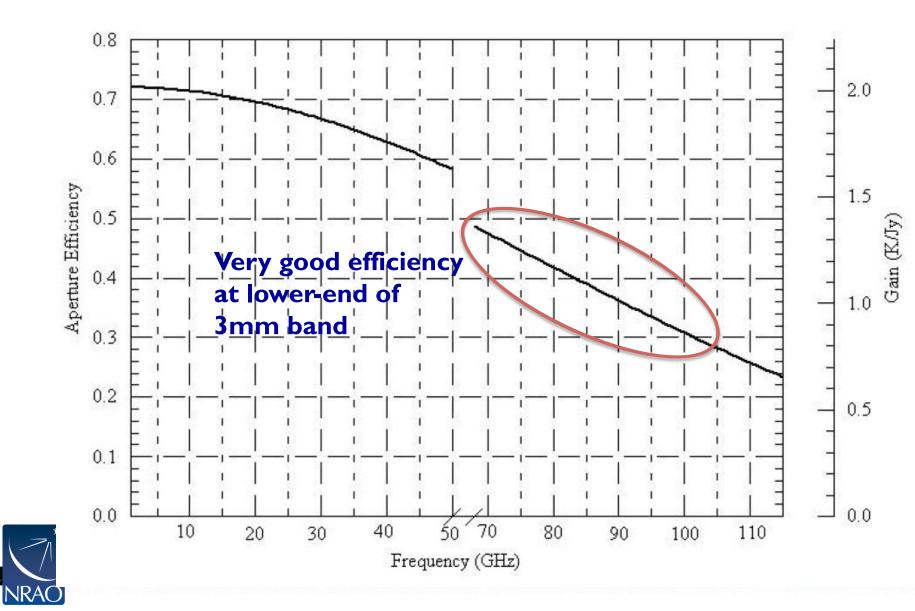
Additional Slides

. .

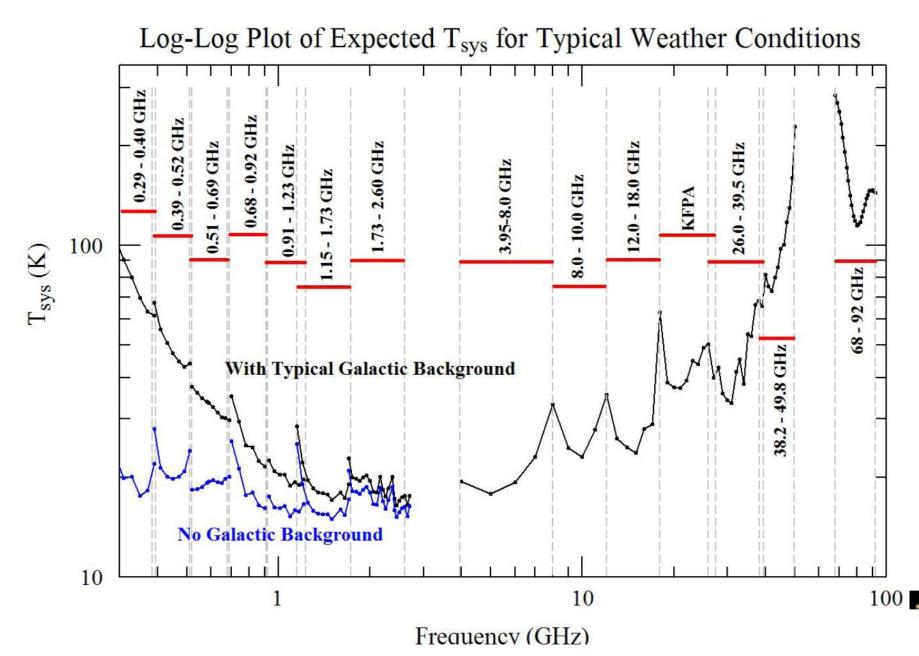


GBT Specs:

Location	Green Bank, West Virginia, USA
Coordinates	Longitude: 79°50′23.406″ West (NAD83)
	Latitude: 38°25′59.236″ North (NAD83)
	Track Elevation: 807.43 m (NAVD88)
Optics	$110 \text{ m} \ge 100 \text{ m}$ unblocked section of a 208 m parent paraboloid
	Offaxis feed arm
Telescope Diameter	100 m (effective)
Available Foci	Prime and Gregorian
	f/D (prime) = 0.29 (referred to 208 m parent parabola)
	f/D (prime) = 0.6 (referred to 100 m effective parabola)
	f/D (Gregorian) = 1.9 (referred to 100 m effective aperture)
Receiver mounts	Prime: Retractable boom with
	Focus-Rotation Mount
	Gregorian: Rotating turnet with
	8 receiver bays
Subreflector	8-m reflector with Stewart Platform (6 degrees of freedom)
Main reflector	2004 actuated panels (2209 actuators)
	Average intra-panel RMS 68 μ m
FWHM Beamwidth	Gregorian Feed: $\sim 12.60/f_{GHz}$ arcmin
	Prime Focus: $\sim 13.01/f_{GHz}$ arcmin (see Section 3.1.1)
Elevation Limits	Lower limit: 5 degrees
	Upper limit: ~ 90 degrees
Declination Range	Lower limit: ~ -46 degrees
	Upper limit: 90 degrees
Slew Rates	Azimuth: 35.2 degrees/min
	Elevation: 17.6 degrees/min
Surface RMS	Passive surface: 450 μ m at 45° elevation, worse elsewhere
	Active surface: $\sim 250 \ \mu m$, under benign night-time conditions
Pointing accuracy	1σ values from 2-D data
	5" blind
	2.7'' offset



The Offset Paraboloid: Clean-beam with very low side-lobes enables high dynamic range and excellent sensitivity to low surfacebrightness emission.



GBT Aperture Efficiency and Gain (K/Jy)

Noise Levels (Tsys) for Typical Weather

GBT Receivers (Observing Bands)

		\frown								\frown
Receiver	Band	Frequency	Focus	Polarization	Beams	Polarizations	Beam	FWHM	Gain	Aperture
	1	Range				per	Separation		(K/Jy)	Efficiency
	1	(GHz)	Λ	,		Beam	Street of Carlot Control of Contr			
PF1	342 MHz	.290395	Prime	Lin/Circ	1	2	a 	36'	2.0	72%
	450 MHz	.385520	Prime	Lin/Circ	1	2		27'	2.0	72%
	600 MHz	.510690	Prime		1	2		21'	2.0	72%
	800 MH:	.680920	Prime	Lin/Circ	1	2		15'	2.0	72%
PF2		.910-1.23	Prime	Lin/Circ	1	2		12'	2.0	72%
L-Band		1.15-1.73	Greg.	Lin/Circ	1	2		9'	2.0	72%
S-Band		1.73 - 2.60	Greg.		1	2	:	5.8'	2.0	72%
C-Band	í — ['	3.95-8.0	Greg.	Lin/Circ	1	2	· · · · · · · · · · · · · · · · · · ·	2.5'	2.0	72%
X-Band	í — · · ·	8.00-10.0	Greg.	Circ	1	2		1.4'	2.0	71%
Ku-Band	1	12.0-15.4	Greg.	Circ	2	2	330''	54''	1.9	70%
KFPA		18.0-27.5	Greg.	Circ	7	2	96″	32''	1.9	68%
Ka-Band	MM-F1	26.0-31.0	Greg.	Circ	2	1	78″	26.8"	1.8	63-67%
	MM-F2	30.5-37.0		,				22.6''		
, L	MM-F3	36.0-39.5		,				19.5''		
Q-Band	1 — V	38.2-49.8	Greg.	Circ	2	2	58"	16''	1.7	58-64%
W-Band 4mm	MM-F1	67-74	Greg.	Circ	2	2	TBD	10''	1.0	35-47%
	MM-F2	73-80	Greg.	Circ	2	2	20("		7	
,	MM-F3	79-86	Greg.		2	2	286"		7	
	MM-F4	85-93.3	Greg.	Circ	2	2				
Mustang		80-100	Greg.		64			10"		35%

Covers wide range of frequency

Very good aperture efficiency even at 3mm

