
Cosmology, Black Holes, and AGNs with Water Megamasers

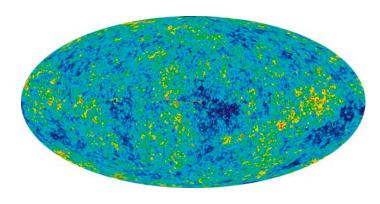
Jim Braatz (NRAO)

Mark Reid Jim Condon Fred Lo Christian Henkel Cheng-Yu Kuo Feng Gao Wei Zhao Violetta Impellizzeri Jan Wagner Dom Pesce

Jenny Greene Anca Constantin Lei Hao

Primary Goals of Megamaser Studies

- I. Measure H₀ using geometric distances
 - Constrain models of cosmology and Dark Energy
- Measure "gold standard" M_{BH} in external galaxies
 M_{BH} scaling relations, galaxy evolution
- I. Measure the geometry of the accretion disk and gas on sub-pc scales in AGNs



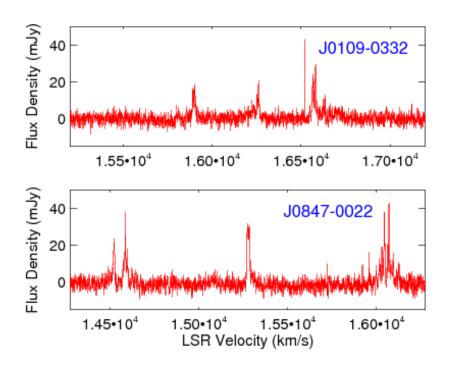
WMAP and Planck Maps of the CMB

- In standard LCDM cosmology in a geometrically flat universe, Planck predicts
 H₀ = 67.3 +/- 1.2 km s⁻¹ Mpc⁻¹
- Cepheid Measurements: H₀ = 73.8 +/- 2.5 km s⁻¹ Mpc⁻¹ (Riess et al. 2011) 74.3 +/- 2.6 km s⁻¹ Mpc⁻¹ (Freedman et al. 2012)
- Chances that this is a statistical effect? I:53

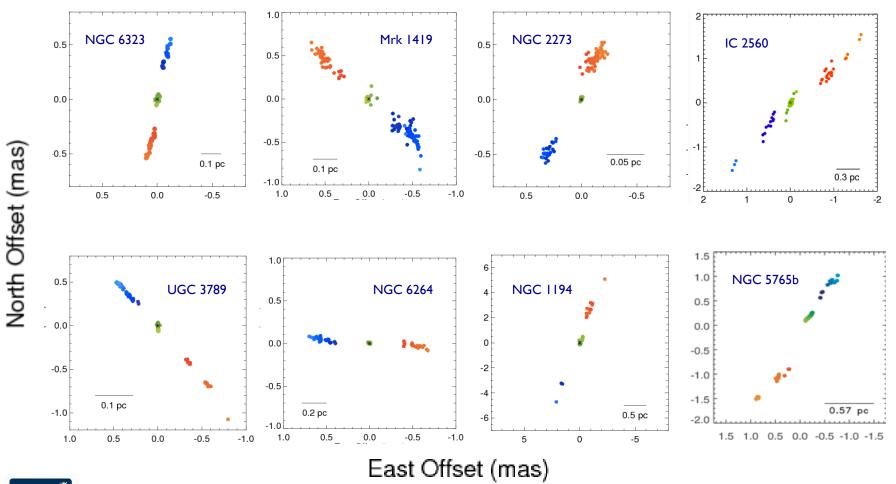
Planck Results Ade et al. 2013 (Paper XVI)

- New Physics?
- Unrecognized error in Measurements?

Steps to Measuring H_0 with the MCP

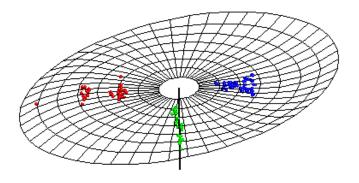

The MCP is an NRAO "Key Project" to measure H_0 precisely by measuring geometric distances to galaxies in the Hubble flow. It is a one step measurement, independent of all other methods.

- 1. Survey with the GBT to identify maser disk galaxies
- 2. Image the sub-pc disks with the High Sensitivity Array (VLBA+GBT+VLA+EB)
- 3. Measure accelerations in the disk with GBT monitoring
- 4. Model the maser disk dynamics and determine distance to the host galaxy

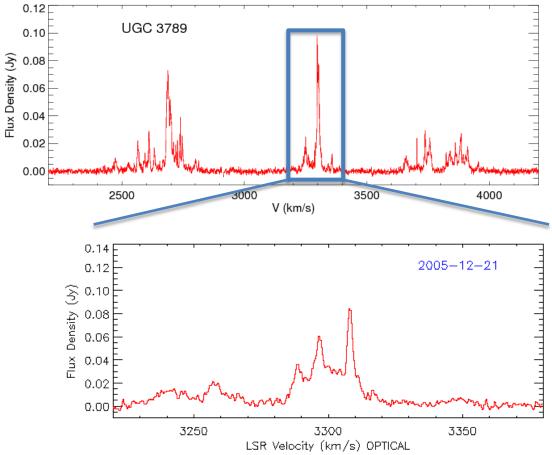

Survey Progress and Recent Disk Maser Discoveries

- 162 galaxies detected; over 3000 observed
- ~140 are in AGNs
- ~ 37 in disks
- ~ 8 appropriate for distances

H₂O Megamaser Disks



. .


Measuring Distances to H_2O Megamasers: Bayesian Estimation of the H_0 PDF

- We fit a warped disk model to the data and use a Markov chain Monte Carlo approach to measure parameters, including H₀. (Feng Gao will elaborate.)
- Two types of input data
 - VLBI map
 - Accelerations from GBT spectral monitoring
- Provide (x, y, v, a) for each maser spot

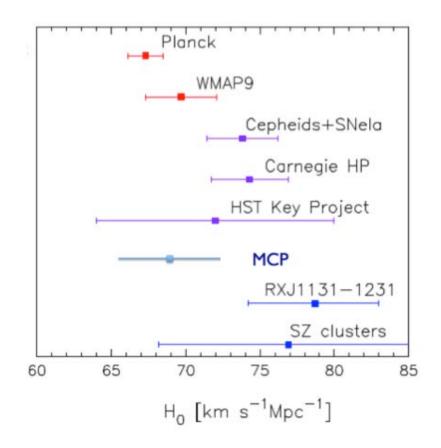
UGC 3789: Systemic Features

Estimation of H₀ from Geometric Distances

$H_0 = 68.6 \pm 5.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (8%)

UGC 3789	49.6 ± 5.1 Mpc	$H_0 = 69 \pm 7$	(Reid et al. 2013)
NGC 6264	137 ± 19 Mpc	$H_0 = 68 \pm 9$	(Kuo et al. 2013)

Including early results in progress: $H_0 = 68.8 \pm 3.8 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (5.6%)


NGC 5765b	$H_0 = 65.5 \pm 7.0$	(Gao et al. in prep)
Mrk 1419	$H_0 = 74 \pm 14$	(Impellizzeri et al.; in prep)
NGC 6323	$H_0 = 90 \pm 20$	(Kuo et al; in prep)
IC 2560	$H_0 = 68 \pm 12$	(Wagner et al; in prep)

Improving the MCP Measurement of H_0

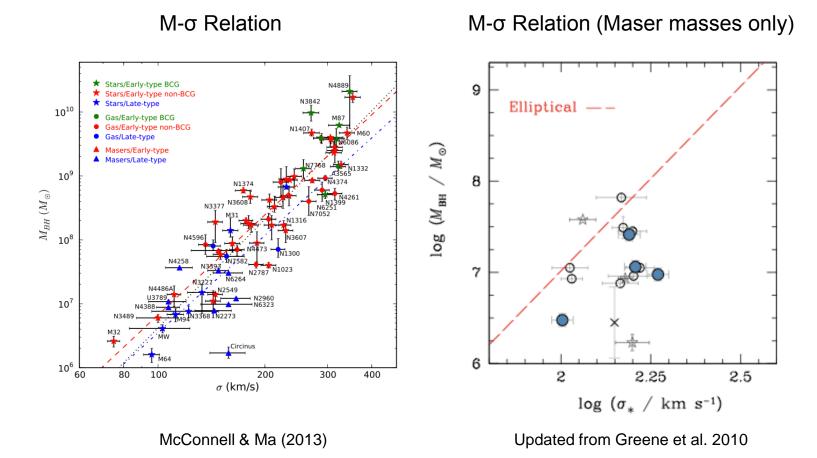
MCP will improve the measurement of H_0 by:

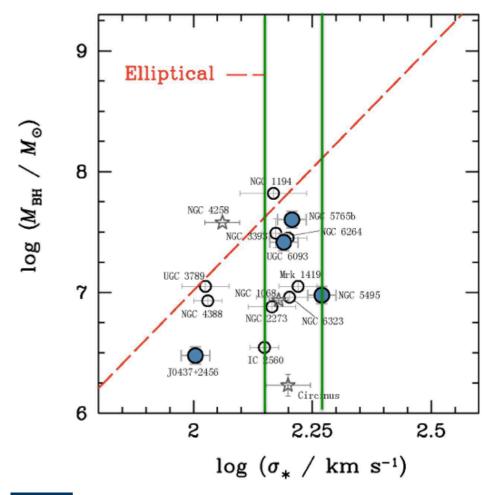
- Measuring additional galaxies
 - ESO558-G009
 - J0437+2456
- Improving our acceleration measurement techniques; modeling techniques
- Incorporating "blind analysis" methods
- SKA?

Update to Fig. 16 Ade et al. 2013 (Planck paper XVI)

Primary Goals of Megamaser Studies

- I. Measure H_0 using geometric distances
 - Constrain models of cosmology and Dark Energy
- 2. Measure "gold standard" M_{BH} in external galaxies - M_{BH} scaling relations, galaxy evolution
- I. Measure the geometry of the accretion disk and gas on sub-pc scales in AGNs

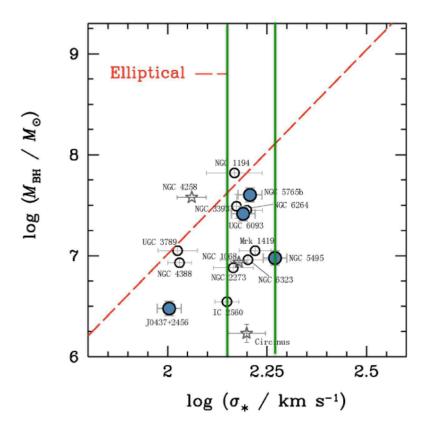




Measuring SMBHs to Learn How Galaxies Evolve

NRAO

M-σ Relation (Mega-maser BH mass only)


Intrinsic scatter:

Within σ = 140 – 185 km/s M_{BH} = (2 – 56) × 10⁶ M_{sun}

Galaxy types: S0 - Sc

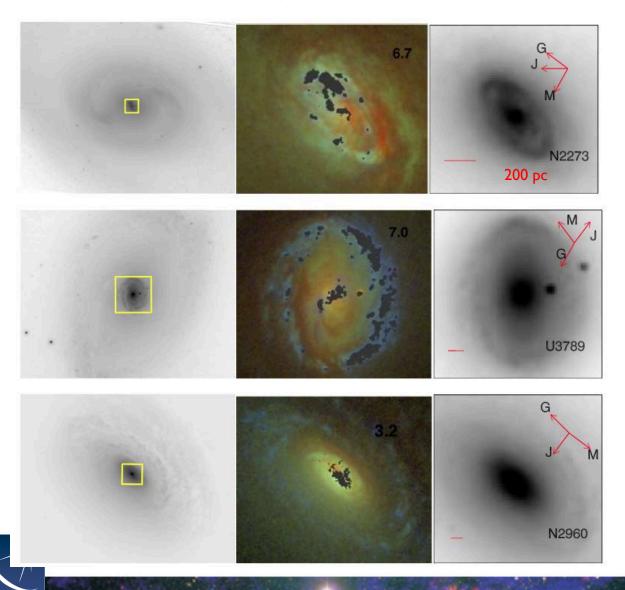
Low-mass BHs Important for Understanding BH Seeds

- "Light seeds" model
 - from pop III stars
 - Predict wide range of present-day BH masses, inc. very low mass systems
 - High occupation fraction
- "Heavy seeds" model
 - from collapse of massive gas clouds in halos
 - Minimum BH mass is higher
 - No very low mass BHs
 - Low "occupation fraction"
- Need more low-mass BH measurements

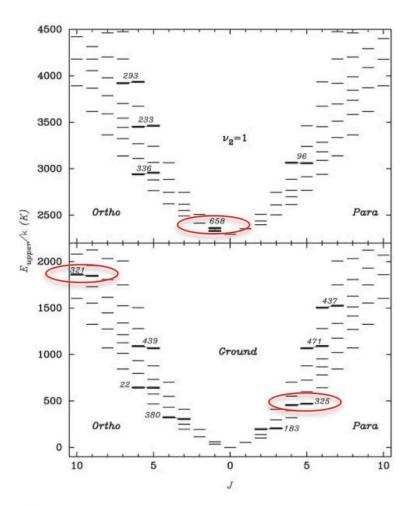
e.g. Volunteri & Natarajan 2009

Primary Goals of Megamaser Studies

- I. Measure H₀ using geometric distances
 - Constrain models of cosmology and Dark Energy
- Measure "gold standard" M_{BH} in external galaxies
 M_{BH} scaling relations, galaxy evolution
- I. Measure the geometry of the accretion disk and gas on sub-pc scales in AGNs



Probing BH Accretion in AGN



NRAO

Greene et al., 2013

Maser disks align with jets, but misalign with all other galactic structures on scales >> 1 pc

What about submm masers?

- H₂O molecule has multiple masing transitions in the sub-mm
- We are beginning an exploratory program to look for sub-mm masers in disks with ALMA in C2

Opportunities for China-USA Collaboration

- Expanding single-dish megamaser work
 - Increasing cadence of monitoring
 - Enabling more precise measurements of accelerations to improve distance determinations
 - Surveys at low and high redshift (K-band; Ku-band; X-band; C-band)
- Where appropriate, coordinate and expand VLBI and S-VLBI opportunities
 - Long baseline VLBI observations could reveal disk substructure and resolve blending
- We already have a successful exchange program with a student and postdoc, and ongoing collaborations

Summary

- Megamasers are making fundamental contributions in AGN astrophysics and SMBH studies
- MCP measurement of H_0 is a critical test for fundamental physics
- We are approaching a 5% measurement: $H_0 = 68.7 \pm 3.7$ km s⁻¹ Mpc⁻¹ and work is ongoing
- Excellent opportunities for science collaboration and studies with the new generation of Chinese telescopes

The End

. . . .