Epoch of Reionization

Recent Results from PAPER And Future Plans

R. Bradley NRAO Charlottesville 20 May 2014

The 3rd China-U.S. Workshop on Radio Astronomy Science and Technology-Emerging Opportunities

Overview

- Motivation
- The HERA Road Map
- PAPER
- Results and Analysis
- HERA II
- Lessons Learned

The First Billion Years

S.G. Djorgovski et al. & Digital Media Center, Caltech

Some Interesting Questions

When did the first stars form?

When did the first accreting black holes form?

When did the hot-bubble EoR begin?

What surprises did the end of the Dark Ages hold?

The History of Hydrogen

What is HERA?

The Hydrogen Epoch of Reionization Array

- HERA is NOT a project, but a road map toward EoR Science.
- Promulgate a phased approach to big science through logical progression of useful activities:
 - HERA I detection
 - HERA II characterization
 - HERA III imaging

HERA as a Science Road Map

What Sets PAPER Apart?

- Focused experiment
- Small dedicated team
- Lots of students
- Learn-as-you-go
- Body of Knowledge
- Calibration is key
- Two arrays
- Tap NRAO expertise
- Hardware optimized for EOR

PAPER Hardware

- 1. Array element
- 2. Sleeved dipole
- 3. Balun
- 4. Ground screen
- 5. Coaxial cable
- 6. Receivers
- 7. Attenuators

- 8. F-engine
- 9. Packet switch
- 10. X-engine
- 11. Hut
- 12. Laptop
- 13. Interface
- 14. Storage

b)

ROACH Board

ROACH Based Correlator a)

PAPER Hardware

PAPER-32 in Green Bank, WV

PAPER-128 in South Africa

Receiver Rack

PAPER

Antenna Assembly in South Africa

Correlator

Fourier Measurements

PSA-32 in South Africa

Minimum Redundancy Array

PGB32 Image Using AIPS / CASA

Northern Sky around Cygnus A AIPS: 1 hour PGB-32, 28 MHz BW, Weakest sources about 4 Jy

Image produced using standard wide-field imaging and self-calibration methods

Power Spectrum Measurement Array in Green Bank

Maximum baseline redundancy

Linear arrays of elements placed in a maximum baseline redundancy configuration to increase sensitivity over a range of wave numbers.

Technology frontier – study of instrumental effects such as cross coupling among the the array elements.

PAPER-128 Maximum-Redundancy Configuration

- power-spectrum sensitivity builds linearly with redundant UV sampling
- rows build redundancy through earth-rotation synthesis

Using Delay Transform to Evade Foregrounds

Removing Foreground by Signal Processing

Sensitivity and Approach for Detecting EoR

- 6 sidereal hours used
- maximum-redundancy antenna configuration
 - repeated, coherent measure of select UV pixels
 - 10x SNR improvement
- per-baseline approach to measuring power spectrum
 - explicit frequency-dependence of interferometer response
 - delay-transform (discussed later) isolates smooth-spectrum emission
 - foreground isolation depends on baseline length

Moving Toward HERA II

Lessons Learned

- Confidence in instrument and calibration method
- Low RFI environment is essential.
- Explore power spectrum measurement methods
- Ionosphere plays a minor role
- Develop optimized array configurations
- Understand sensitivity (no EoR detection, yet!)
- The NRAO and SA infrastructures are an important asset!
- A phased approach is highly desirable.