
Prospects for Extragalactic HI Line Studies with Large Single Dishes

... and a few lessons from the <u>Arecibo</u> <u>Legacy Fast ALFA</u> (ALFALFA) Survey

Martha Haynes Cornell University

3rd U.S.-China Workshop Green Bank May 20, 2014

Surveys: A "golden age" for HI science

Single dish: 2000's : HIPASS (Parkes) 2005- : ALFALFA (Arecibo), EBHIS (Effelsberg), GASS (Arecibo; targeted, not blind)

Synthesis:

THINGS, LittleTHINGS, VLA-ANGST, VIVA, SHIELD ATLAS-3D (WSRT; ETGs also observed optically) CHILES (VLA pilot higher redshift)

2

And even more to come..!

Arecibo Legacy Fast ALFA Survey

- One of several major surveys undertaken at Arecibo, exploiting its ALFA multibeam capability
- An extragalactic spectral line survey (mainly HI)
- Covers ~7000 sq deg of high galactic latitude sky
- 1345-1435 MHz (-2000 to +17500 km/s for HI line)
- 5 km/s resolution (100 MHz/4096 channels)
- <u>2-pass, drift mode (total int. time per beam ~ 40 sec)</u>
- ~2 mJy rms (per spectral resolution element)
- <u>4400 hrs</u> of telescope time; <u>99% "open shutter"</u> time
- Started Feb 4, 2005; completed Oct 26, 2012
- 59 (published) + 5 (submitted) refereed papers to date
- 11 PhDs completed; 9+ underway; + Undergrad ALFALFA Team
- An "open collaboration": let's do science!

http://egg.astro.cornell.edu/alfalfa

FA

ALFALFA: A 2nd generation HI survey

In comparison with opt/IR, the HI view is largely immature

ALFALFA:

- Designed to explore the HI mass function over a cosmologically significant volume
 - Higher sensitivity than previous surveys
 - Higher spectral resolution => low mass halos
 - Higher angular resolution => most probable optical (stellar) counterparts
 - Deeper: 3X HIPASS median redshift => volume
 - Wider area than surveys (other than HIPASS) => nearby volumes for lowest M_{HI} => <u>cosmologically significant volume</u>

We're here to talk about the 3rd generation!!!!!!!!!!

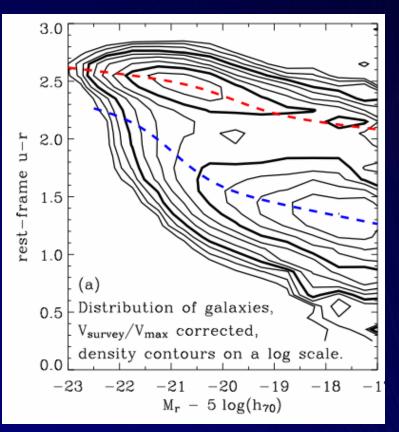
LFA

ALFALFA: A 2nd generation HI survey

In comparison with opt/IR, the HI view is largely immature

ALFALFA:

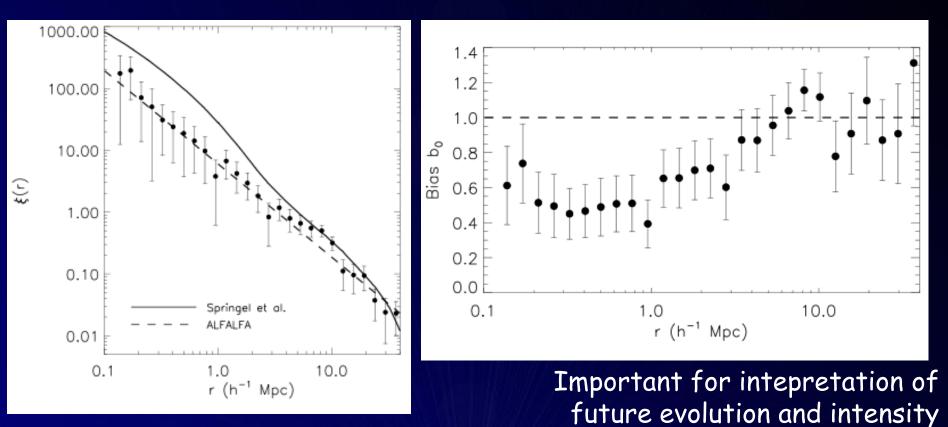
- Designed to explore the HI mass function over a cosmologically significant volume
 - Higher sensitivity than previous surveys
 - Higher spectral resolution => low mass halos
 - Higher angular resolution => most probable optical (stellar) counterparts
 - Deeper: 3X HIPASS median redshift => volume
 - Wider area than surveys (other than HIPASS) => nearby volumes for lowest M_{HI} => <u>cosmologically significant volume</u>


3rd generation MUCH MORE DEMANDING THAN ALFALFA

IFA

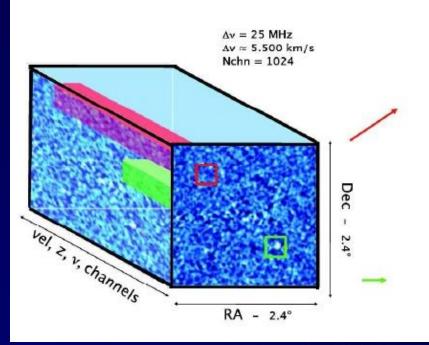
The ALFALFA galaxy population

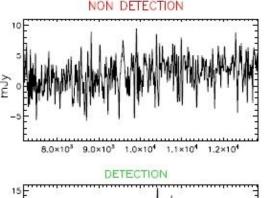
Shan Huang (Cornell) PhD thesis Huang+(2012b) ApJ 756, 113

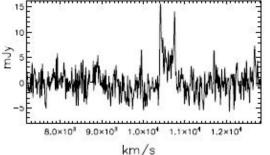


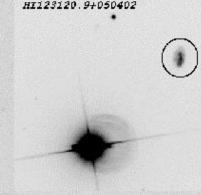
HI-selected ALFALFA population

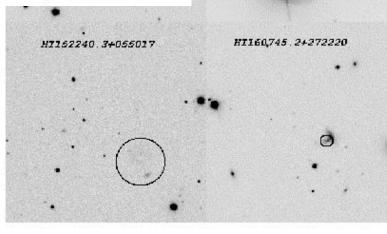
mapping experiments


The HI population is much less clustered on small scales, but follows the DM on large scales.




Ann Martin (Cornell) PhD thesis, 2011 Martin + (2012) Ap J 750, 38


ALFALFA+Future ExGal HI surveys



- Automated signal extraction
 - Saintonge, 2007 AJ
- Spectral stacking
 - Fabello+ 2010
- Optical counterpart identification
 - Haynes+ 2011

Surveys: A "golden age" for HI science.

<u>Single dish:</u>

2000's : HIPASS (Parkes)

2005- : ALFALFA (Arecibo), EBHIS (Effelsberg) GASS (Arecibo; targeted, not blind) GBT nearby groups (M81/2; NGC2403 etc)

<u>Synthesis:</u> THINGS, LittleTHINGS, VLA-ANGST, VIVA, SHIELD ATLAS-3D (WSRT; ETGs also observed optically) CHILES (higher redshift)

9

And... coming soon....

Surveys: A "golden age" for HI science.

<u>Single dish:</u>

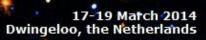
2000's : HIPASS (Parkes)

2005- : ALFALFA (Arecibo), EBHIS (Effelsberg) GASS (Arecibo; targeted, not blind) GBT nearby groups (M81/2; NGC2403 etc)

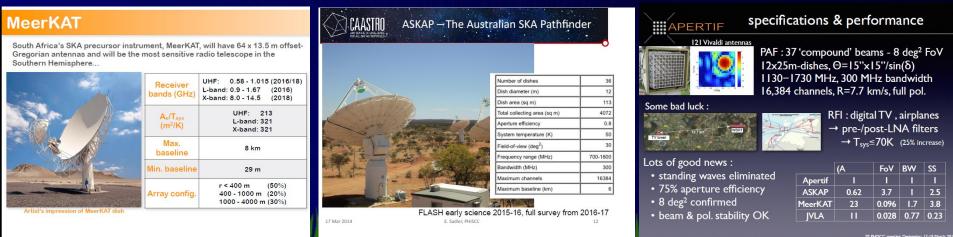
<u>Synthesis:</u> THINGS, LittleTHINGS, VLA-ANGST, VIVA, SHIELD ATLAS-3D (WSRT; ETGs also observed optically) CHILES (higher redshift)

LFA

SKA pathfinder arrays


APERTIF ASKAP-12,-36 MeerKAT SKA I/ Survey

7th International PHISCC Workshop


The Challenges of the Upcoming HI Surveys

Pathfinder HI SKA Coordinating Cmte

Examples:

- WALLABY (ASKAP): "all sky", 0.0 < z < 0.26; 1.6 mJy/beam, 30"
- LADUMA (MeerKAT): 5000 hours on ECDF-S; stacking!
- MediumDeep (APERTIF): 500 sqd over several fields
- FLASH (AKSAP): HI in absorption
- DINGO (ASKAP): deep survey on GAMA fields
- MONGHOOSE (MeerKAT): deep survey centered on selected galaxies to look at low column density HI
- SKA-I survey.... TBD

Single Dishes vs Arrays

Following on the discussion in Jay Lockman's talk

- Collecting area!
- Surface brightness sensitivity (see Jay's talk)
- Number/complexity of subsystems (e.g. receivers/PAFs)
 - Cooled front ends so lower Tsys
 - More spectral channels
 - More bandwidth
- Angular resolution
- for single dishes: susceptibility to RFI (ground/air/space)
- + for GBT: clear aperture, NRQZ

What science is optimized by any particular telescope?

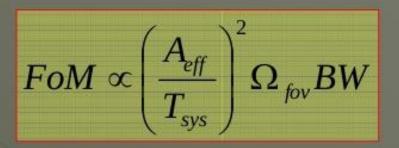
FA

The minimun integration time in sec , to detect an HI mass M_{HI} at the distance D_{Mpc} with a $T_{sys}/G=3$ Jy telescope (e.g. Arecibo), is

$$t_s \approx 0.25 \left(\frac{M_{HI}}{10^6 M_{sun}}\right)^{-2} D_{Mpc}^4 \left(\frac{W_{kms}}{100}\right)^{\gamma}$$

Where $\gamma=1$ for W<300 km/s and increases to $\gamma\sim2$ at larger widths.

i.e. the Depth of the survey increases only as


$$D_{Mpc} \propto t_s^{1/4}$$

•While a galaxy with 1% the HI mass of the MW at Virgo distance can be detected in less than 1 min with ALFA,
•A MW HI mass at even moderate z (e.g. z~0.25, D~ 1Gpc) will require many hours of integration
→Only the most massive HI sources are detectable at even moderate z

Giovanelli (2008)

SAISTIN

Survey Speed Figure of Merit

Parameters Used:

THE	D (m)	Beam	Ntel*Nbm	Tsys	BW
AO1	225	3.5'	1x1	25K	100MHz
ALFA	225	3.5'	1x7	30K	300*
AO40	225	3.5'	1x40	50K	300
APERTIF	25	30'	14x25	70K	300
ASKAP	12	60'	30x30	35K*	300

(*) The actual performance that FPPAs will deliver is still very uncertain; Tsys values of 35K or 50K are rough expectations. It would be fair to use the same Tsys values for all telescopes \rightarrow a value of 50K for ASKAP would then apply.

Adapted from Giovanelli (2008)

Big single dishes+multibeams ARE competitive!

Survey Speed Figure of Merit

$$FoM \propto \left(rac{A_{eff}}{T_{sys}}
ight)^2 \Omega_{fov} BW$$

	(A _e) ²	(Tsys) ²	FoV	BW	FoM
AO1	1	1	1	1	1
ALFA	1	1/1.4	7	3**	14**
AO40	1	1/4	40	3	30
APERTIF	1/41	1/6	1800	3	22
ASKAP	1/170	1/2*	8800	3	74*

(*) For Tsys=50K, the FoM of ASKAP is 37, comparable w/AO40 & APERTIF

Adapted from Giovanelli (2008)

ALFALFA Science Goals

- 1. Census of HI in the Local Universe over cosmologically significant volume
- 2. Determination of the faint end of the HI Mass Function and the abundance of low mass gas rich halos
- 3. Environmental variation in the HI Mass Function
- 4. Blind survey for HI tidal remnants
- 5. Determination of the HI Diameter Function
- 6. The low HI column density environment of galaxies
- 7. The nature of HVC's around the MW (and beyond?)
- 8. HI absorbers and the link to Ly α absorbers
- 9. OH Megamasers at intermediate redshift 0.16 < z < 0.25

Importantly: a z~0 survey

ALFALFA Science Goals

- 1. Census of HI in the Local Universe over cosmologically significant volume
- 2. Determination of the faint end of the HI Mass Function and the abundance of low mass gas rich halos
- 3. Environmental variation in the HI Mass Function

Science goals => principal driver

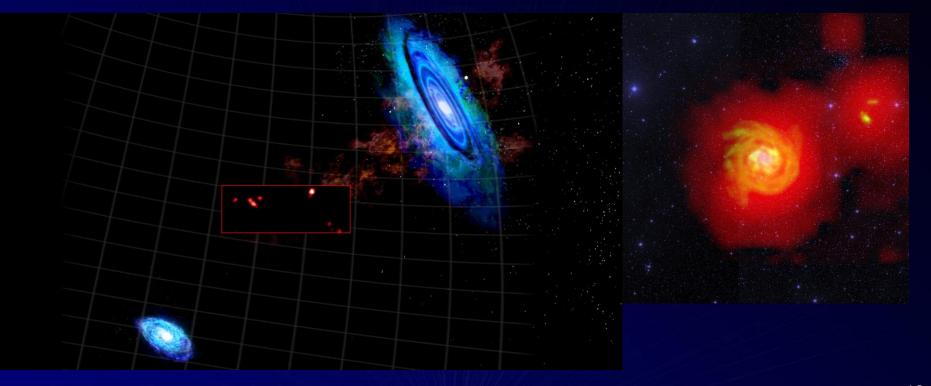
- Unique and compelling

Dictate requirements for instrument/telescope:

- Sky coverage (how much?)
- Bandwidth AND velocity resolution
- Sensitivity (volume sensitivity)

These in turn dictate observing strategy

<u>Arecibo:</u> <u>Drift</u> scan, <u>2-pass</u>, <u>"minimum-intrusion"</u> strategy



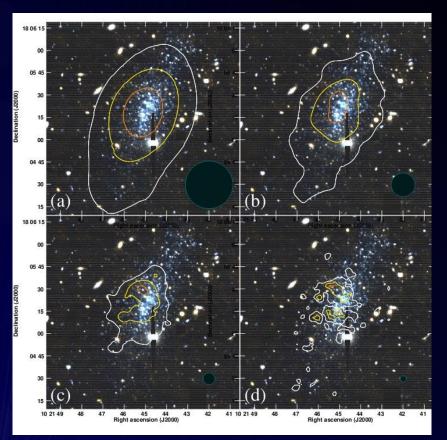
When low column density counts

Diffuse/cosmic web gas => low column density

- As discussed in Jay Lockman's talk
- Does cold accretion fuel star formation?

FALFA

When discovery is the driver


Counting low mass halos: the faint end of the HIMF

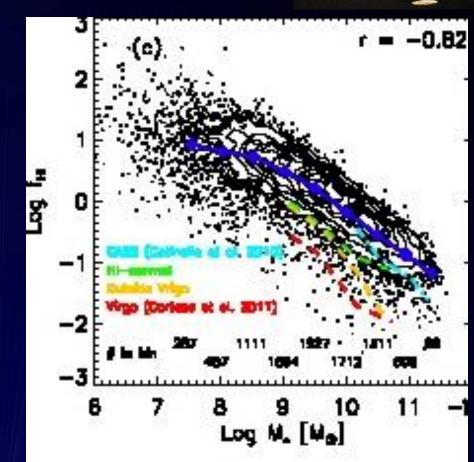
- Missing satellite problem
- Void problem
- Field galaxy problem

Leo P: A new nearby dwarf discovered as an UltraCompact High Velocity Cloud in ALFALFA

- Need large solid angle
- Distance ambiguities
- Need resolution of few km/s
- Need high sensitivity (to small HI masses) at significant distances

Deeper than ALFALFA, sensitive to HI masses of few x $10^5~M_{\odot}$ over significant nearby volume

Discovered by ALFALFA VLA+GMRT: Bernstein-Cooper et al. 19 (2014)

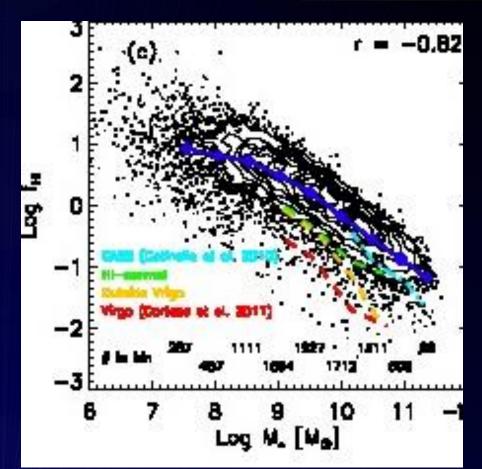


When a census is the driver

Intermediate mass, star forming galaxies: How, why, where?

- Moderate mass SF galaxies have more HI than stars
- Virtually all HI detections with log M_H > 8 have optical counterparts
- But, they may not be included in flux-limited UV/OIR surveys
 - Shredding of pipeline photometry

Deeper surveys needed over 1000s of square degrees to catch up with SDSS/PanSTARRS



When detection is the driver

"Typical" star forming galaxies: How, why, where, when?

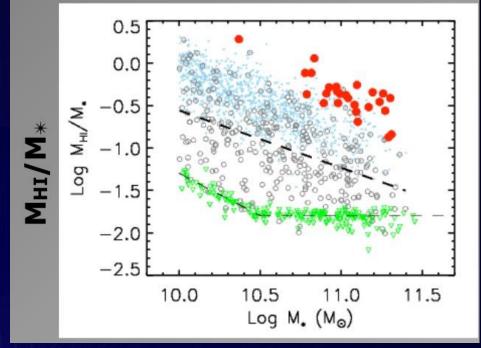
- At redshift z~0.1 (comparable depth to SDSS), the Arecibo beam (4.') subtends about 400 kpc => R₂₀₀(MW) ~ 400 kpc.
- A survey which retains sensitivity at this distance to MW-mass galaxies.
- Need to have complementary multiwavelength data
- Need to plan best strategy (targeted vs blind?)

When sensitivity is the driver

The processes responsible for making galaxies HI poor.

- Majority of galaxies in rich clusters are HI deficient, many by a factor of 10 (or more)
- Very high mass galaxies in general have low gas fractions; many have very low gas fractions, according to how red they are.
- HI-deficient galaxies are not detected by blind HI surveys
 - Need to push to constant gas fraction
 - Targeted observations better strategy

e.g. GASS (Schiminovich et al.), HI deficiency in clusters

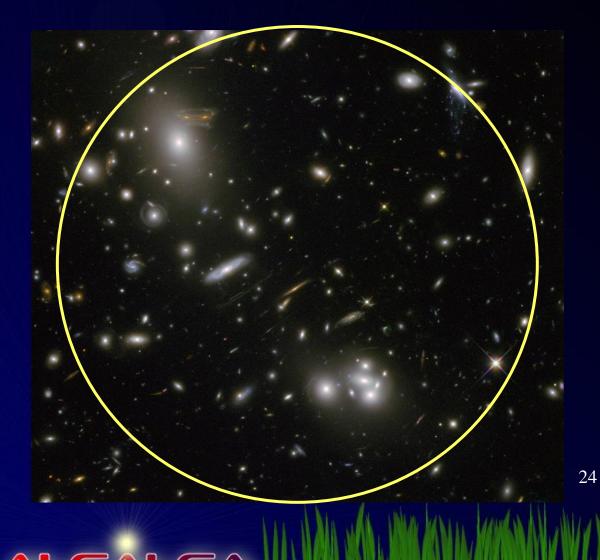

When detection is the driver

Targeting intermediate redshift galaxies

- Observations tough: requires hours per target
- RFI environment is critical

- Pre-select targets based on optical spectroscopy to study selected populations
 - It is possible!
- Test stacking bias (required for higher z surveys).
- Evolution of T-F relation (rotational velocity as predictor of luminosity)

Red points: z ~ 0.2 HI detections Catinella & Cortese 2014 in prep



When a census is the driver

Targeting intermediate redshift groups

- At z=0.5 (950 MHz), Arecibo beam (5.25') subtends 2.0 Mpc => R₂₀₀(Coma) ~ 2.0 Mpc
- Measure integrated HI emission of clusters/groups discovered in OIR surveys as function of redshift/richness/SFR

When resolution isn't the driver

<u>Application of the T-F relation in the infall regions in the local universe:</u>

-- The next talk, by Li Xiao, on an example of a possible future survey to measure and characterize the flow around the Pisces-Perseus supercluster.

IFA

The Future of Big Dish ExGal-HI

- There is fundamental/transformational extragalactic HI science that is best/uniquely done with large single dishes with/out multiple beam devices.
- Lots of overlap in software/hardware/need for multiwavelength plus complementarity of different telescope designs/circumstances.
- In order to maximize scientific productivity and efficiency, it would be advantageous to construct a coordinated program of surveys/multiwavelength observations with the large single dish telescopes in the northern hemisphere
 - e.g. a coordinating committee for single dish surveys?

