Fast Radio Bursts (facts and speculations)

Duncan Lorimer Dept. of Physics and Astronomy West Virginia University

- What do we observe?
- How are they found?
- What could they be?
- Why are they important?
- What are we doing?
- My bold predictions!

What is observed?

- 1+1+4+1+1=8 published
- Peak flux > 0.5 Jy
- L-band (1.4 GHz)
- Highly dispersed
- Pulse widths > few ms
- Evidence for scattering
- Singular events?
- Different sky locations
- No counterparts so far

From Thornton et al. (2013)

Obligatory table of numbers

FRB	I	b	DM	Width	Flux
010724	300	-42	375	4.6	30
010621	25	-4	746	8.3	0.4
110220	51	-55	944	5.6	1.3
110703	81	-59	1104	1.4	0.5
110627	356	-42	723	4.3	0.4
120127	49	-66	553	1.1	0.5
121002	308	-26	1628	2/4	0.4
121102	175	-0.2	557	3	0.4

Compared to pulsar DMs

Compared to pulsar DMs

How are they found?

Example search-code output

Bright events are easily visualized

Faint events are harder to see

What could they be?

Credit: J-P Macquart

Black: Parkes; Pink: SKA1-lo; Grey: SKA1-mid

What could they be?

- Local
 - Atmospheric Peryton idea

(Kulkarni et al. 2014)

Extra-terrestrial
Alien signals

(Luan & Goldreich 2014)

Galactic
–Flare stars

(Loeb et al. 2014)

Extragalactic

 Favored cosmic catastrophe (Cobbly et al. 2014)

Extragalactic source possibilities

- Collapsing neutron stars
- Evaporating black holes
- Coalescing neutron stars
- Coalescing white dwarfs
- Magnetar flares
- Supernovae
- Giant pulses
- Cosmic strings...

Desperately need counterparts

What can we do with 'em? (assuming that they are extragalactic)

- Measure the distance \rightarrow origins
- Measure the intergalactic DM
- Measure turbulence in IGM
- Probe missing baryons and DE
- Measure the intergalactic B-field
- Probe population at different redshifts

Probing the missing baryons

FRBs as cosmic rulers

What next?

Find bursts with other telescopes

What next?

- Find bursts with other telescopes
- Find them at different frequencies

Scattering in FRB 110220

What next?

- Find bursts with other telescopes
- Find them at different frequencies
- Do as much as possible with existing ones

Bannister & Marsden (2014)

What are people doing

- Searching archival data
- Follow-up on existing bursts
- Realtime detectors on large/small dishes
- Staring at the sky with interferometers

Bold predictions

- 2015: counterparts found
- 2020: 100s FRBs found
- 2025: 1000s of FRBs known
- 2030: FRBs essential cosmological tools