Ultra-High Angular Resolution VLBI

Rusen Lu (路如森) rslu@haystack.mit.edu

MIT Haystack Observatory

Ultra-High Angular Resolution VLBI enabled by mm-VLBI

Rusen Lu (路如森) rslu@haystack.mit.edu

MIT Haystack Observatory

The quest for high resolution VLBI

typical resolution (ground-based): λ/D (cm) ~ 0.5 mas

 $\begin{cases} space VLBI \\ shorter \lambda \end{cases}$

Both are challenging, but feasible

future: space (sub)mm-VLBI

Advantages provided by mm-VLBI

Self-absorption:

look "deeper"

Marscher et al.

Advantages provided by mm-VLBI

Wavelength

Self-absorption: look"deeper"

Scattering in the ISM Θ scat $\propto \lambda^2$

Advantages provided by mm-VLBI

Self-absorption: look "deeper"

Scattering in the ISM Θ scat $\propto \lambda^2$

> Faraday rotation: $\chi \propto \lambda^2$

The Event Horizon Telescope:

(a global (sub)mm-VLBI array)

The EHT as viewed from Sgr A*

EHT Sites

- Mauna Kea, Hawaii: SMA (~8 x 6-m, single polarization) JCMT (15-m, single polarization)
- Mount Graham, Arizona: SMT (10-m, dual polarization)
- Inyo Mountains, California: CARMA (5 x 10-m + 3 x 6-m, dual polarization;10-m, dual polarization, reference)
- Sierra Negra, Mexico: LMT (50-m)
- Atacama desert, Chile, APEX, (12-m)
- Atacama desert, ALMA, (85-m)
- Pico Veleta (Sierra Nevada, Spain, 30-m)
- Plateau de Bure (France, 35-m)
- South Pole Telescope (10-m)
- Greenland Telescope (12-m)

(near) Future goal: black hole shadow imaging

Not all black holes are created equal:

- Sgr A*: 4 million M_{\odot} BH, Rsch = 10 μ as
- M87: ~6.6 billion M_{\odot} BH, Rsch = 7.5 μ as

EHT provides wellmatched resolution!

~ 30-20 µas

(Bardeen 1973, Falcke, Agol & Melia 2000)

Imaging the BH shadow in M87

Varying Loading Radii

Minimum requirements:

1. The counter jet has to be sufficiently bright for the black hole to cast a jet against ($R_{load} \leq 11 \text{ M}$)

2. The phased ALMA has to be included in the array with bandwidth \times coherence time \approx 4GHz \times 12 s at 230 GHz (more stringent requirement at 345GHz)

Imaging the BH shadow in M87

(Lu et al. 2014, ApJ, in press)

MEM, Bayesian approach

Minimum requirements:

1. The counter jet has to be sufficiently bright for the black hole to cast a jet against ($R_{load} \leq 11 \text{ M}$)

2. The phased ALMA has to be included in the array with bandwidth \times coherence time \approx 4GHz \times 12 s at 230 GHz (more stringent requirement at 345GHz)

Imaging the BH shadow in Sgr A* (overcome scattering broadening)

230 GHz

The effects of scattering can be mitigated by correcting the visibilities before reconstructing the image

other applications: low frequency VLBA images of Sgr A* or, other scatter-broadened sources(?)

Fish et al. in prep

Horizon-scale structure in Sgr A*

SgrA* has the largest apparent event horizon of any black hole in the Universe

Doeleman et al. 2008, Nature

About 4 Schwarzschild radii across

$$\rho = 10^{23} M_{\odot} pc^{-3}$$

I.3 mm emission offset from the BH

Resolving jet-launching structure in M87

M87 measured size = 5.5 Rsch

The Innermost Stable Circular Orbit

rotates!

ISCO at 6 GM/c².

(spinning in same

direction as disk).

ISCO at 1 GM/c².

 Maximally-spinning retrograde BH (spinning in opposite direction as disk). ISCO at 9 GM/c².

credit:Sky & Telescope

Doeleman et al. 2012, Science

Resolving structure in Sgr A*

Non-zero closure phase detected

Fish et al. in prep

Median closure phase (+6.3 deg) on the California-Hawaii-Arizona triangle

consistent sign (daily average) over many days over the course of multiple years [compare: characteristic timescale GM/c^3 ~ 20s]

sign of day-to-day variability

no point symmetry: elliptical Gaussian, uniform ring, two-sided jet in the sky plane etc.

call for physically motivated models

EHT polarimetry calibration

Johnson et al.

EHT polarimetry calibration

Johnson et al.

Fractional Polarization due to instrumentation is removed modest and slow varying polarization in BL Lac

EHT polarimetry: 3C279

low polarization on short baselines (beam depolarization?)

high polarization on long baselines fine-scale structures are polarized Lu et al. 2013

Probing inner structure of AGN jets: an example

multi-epoch data to study jet acceleration & "precession"? (may need to combine low frequency data)

Summary

Horizon-scale structures in Sgr A* and M 87 detected

Imaging black hole shadow in Sgr A* and M87 demonstrated (within reach in next few years)

Polarimetry as a new tool to probe B field structure in the vicinity of nearby black holes

New data point towards "complex" and extremely compact structures in Sgr A* $% \left(A^{*}\right) =0$

Study AGN jet formation and propagation on sub-pc scales (horizon scales for M87)