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Integration of Analog, Digital, and 
Photonic Front-End Components 

• Re-optimizes front-end architecture to leverage modern advances in: 
– Integrated technology, and 
– Digital Signal Processing (DSP). 

• These concepts are complementary: 
– DSP delivers precision unmatched by analog techniques, 
– while integration ensures stability in both amplitude and phase 

• more accurate and longer-lasting calibrations 
• crucial to high-dynamic range imaging 

• To that end, we 
– digitize as close to the antenna feed as possible, 
– transfer any functionality we can into the digital domain, 
– and integrate into the front-end everything needed to lock-in the analog amplitude and 

phase drift and to get the data physically off the telescope (i.e. analog, digital, and 
photonic). 
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Orthomode Transducers (OMTs) 
Generally Work in Two Steps 

 
• "Factorization" 

– separation of dual-polarized input 
into vector components 

– turnstile, Bøifot, etc. 

 
 

• "Reconstruction" 
– Re-assembly of component vectors 

into orthogonal polarizations 
– Typically, E/H-Plane combiners, planar 

baluns, etc. 

A. Navarrini, A. Bolatto and R. L. Plambeck, "Preliminary test results of the turnstile junction waveguide 
orthomode transducer for the 1 mm band," CARMA Memo #32, 15 Mar 2006. 3 



Digital Polarization Synthesis 

 
• "Factorization" is still done by 

analog means. 
 
 
 

• But "Reconstruction" or synthesis 
can be done digitally 

– with greater accuracy, and 
– reduces loss in front of the cryogenic 

amplifiers. 
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Numerical Reconstruction Affords 
Additional Degrees of Freedom 

• Center-probe couples in 
common-mode into all three 
channels, but not into a radiating 
mode on the sky. 

• No added insertion loss (unlike 
calibration coupler). 

• Signal drops out during digital 
polarization reconstruction. 

– Allows for strong omnipresent 
calibration signal that does not mask 
observations, and 

– pilot-tone stabilization of amplitude 
fluctuations. 
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Polarization Performance and Stability 

Isolation (Linear Pol.) Axial Ratio (Circular) 
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Digital Sideband-Separating 
Downconversion 
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Benefits of Numerical Reconstruction 
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• Digital IF Hybrid is "better than 
ideal" in that it can compensate 
for analog RF-circuit imbalances. 
 

• Allows precise, single-stage 
downconversion to baseband 
with only one system-wide LO. 

– Guards against spurious mixing 
products which integrated receivers 
are especially sensitive to. 



Sideband-Separation Performance and 
Stability 

Initial Calibration After Temp. Excursion 

9 

28 °C 40 °C 



Careful Step-by-Step Development 
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Internal ADCs Introduce No Measurable 
Interference 
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expected clock harmonic 

(12.5 minute integration) 
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longest integration we could do at the time



MMICs and Integration 

Analog Digital & Photonic 

12 



Miniaturization 

13 

(multiple chips in an SMT package) 



Integration of Optical Transmitter 
• Conventional digital fiber optic links come with a great deal of complex 

logic 
– bit scramblers 
– 8/10 encoding 
– packetizing/framing 

 
• These functions add to the bulk and power dissipation of the front-end 

while increasing the risk of digital self-interference. 
 

• But the known statistics of our signal may work to our advantage: 
– Well-characterized by Gaussian-distributed white-noise. 
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• Known statistics of radio 
astronomy signals allow link 
management to be performed 
entirely at the receive end. 

– 1st Challenge: DC Balance 
– 2nd Challenge: Clock Recovery 
– 3rd Challenge: Word-Alignment 
– (also channel synchronization, power, 

interleaving...) 

• To realize a digital fiber-optic data 
link with minimal overhead, we 
use only 

– a sampler, 
– a serializer, 
– a laser driver, 
– and a laser. 

Unformatted Digital Fiber Link 
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Implementation 

Analog-Digital-Photonic 
Front-End Photonic Data Receiver 
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Want to know what's under the hood? 
(Backup slides follow...) 
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Vector Components Need Not Be 
Orthogonal/Independent 

• Three-channel systems have 
advantages: 

– triangular/triple-ridged waveguides 
have broader mode-free bandwidth 

– extra degree of freedom permits 
common-mode calibration channel 
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Broad Mode-Free Bandwidth 
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Broad Mode-Free Bandwidth (cont'd) 
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• Low-order modes become like 
TEM modes. 

• Their number is simply the 
number of ways you can assign 
currents to the wires while 
maintaining DC balance. 

• In the limit, all the fields are 
concentrated in the gaps. 

• N-ridges become N-wires. 
• Outer walls become "infinitely" 

far away. 

N-Wire Model For Ridged Waveguides 
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• "Unlimited" single-mode bandwidth makes 
it easier to realize compact, abrupt 
transitions (e.g. thermal and vacuum) 

• These junctions, along with smaller mass 
enable cryogenic cooling of 
electromagnetic components where other 
approaches cannot. 

Triple-Ridged for Ultra-Wideband AND 
Low Noise? 
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Laboratory Measurement Setup 
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Not Dependent on Bit Resolution 
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Reflectionless Filters Enhance Stability 
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• New filter topology changes less with 
temperature (lower peak above) and 
more consistently with component values 
(less spread) than conventional designs. 

– fewer calibration points are required 
– calibration is far more stable 



Design a Reflectionless Filter: 
Even-/Odd-Mode Analysis (backwards) 
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symmetric 
two-port network Even-Mode excitation: Odd-Mode excitation: 

+ + - 

Odd-Mode 
equivalent circuit 

Even-Mode 
equivalent circuit 

(open) 
(short) 

+ 

Allows you to solve two 1-port networks 
instead of one 2-port network. 

Reverse application: Instead of solving for the 
performance of a given circuit, let us first 

prescribe the desired performance and then 
derive a circuit that achieves it... 



Even-/Odd-Mode Equations for a 
Reflectionless Filter 
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Design a Reflectionless Filter 
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(open) 

Even Mode 
equivalent circuit 

(short) 

Odd Mode 
equivalent circuit 

"Reflectionless" if: 
zeven=yodd 

(normalized) 

Full-circuit transmission coefficient 
= even-mode reflection coefficient. 



You Now Have a Symmetric Low-Pass 
Reflectionless Filter! 
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Low-Pass, High-Pass, Band-Pass, and 
Band-Stop 
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High-Order Designs are Possible as 
Well... 
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Integration of Samplers 
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L-Band Module 

Analog Side Digital Side 
ADCs 

RF Board IF Channels 

Analog Inputs 

Digital Outputs 



1st Challenge: DC Balance 
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Instantaneous Voltage vs. Time 



1st Challenge: DC Balance 

• Actually, this is not a problem. 
– Individual samples are random with 

zero mean value. 

• Common binary codes are 
symmetric about center. 

– Positive sample codes are mirror 
images of negative sample codes. 

– Thus, any given bit for any given 
sample has an equal chance of being a 
1 or a 0. 

• Only requires ADCs to have 
reasonably low offset voltage. 

– Small offsets lead to correspondingly 
small level shifts in the eye diagram. 

– Unlikely to break the serial link. 
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2nd Challenge: Clock Recovery 

• Commercial deserializers can 
recover the clock from data 
streams that satisfy certain 
minimum transition density 
requirements. 
 

• MAX3880 from Maxim: 
– "Tolerates >2000 Consecutive 

Identical Digits" 

• VSC1236 from Vitesse: 
– signals Loss of Data when "transition 

density is less than 40%." 
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3rd Challenge: Word Alignment 
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• The MSB has a 
predictable correlation 
with its neighboring 
bits in the most likely 
sample codes near the 
middle of the sampler 
range. 
 

• This allows for the 
direct statistical 
determination of word 
boundaries in a serial 
data stream without 
any prior formatting. 

{ }1−≠= kkk bbPq



Statistics Largely Immune to Passband 
Shape and External Interference 
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Strong Statistics Provide Very Reliable 
Operation 
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For Straight Binary, a Simple XOR Gate 
is Sufficient 
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4th Challenge: Synchronization 
• Without framing, differential delays on parallel fibers may cause 

simultaneous data streams to arrive at the backend spectrometer or 
correlator out of sync. 

– In this regard, it is no different from an analog fiber optic link... 

 
• But unlike analog links, the ∆τ must be an integer multiple of the sample 

period, introducing a discrete-valued phase-slope into the correlation 
between channels. 
 

• In-situ calibration signals provide an easy means for monitoring these 
slopes/delays. 
 

• As long as they are stable (or tracked) within a sample period, the 
recovered synchronicity between parallel channels will be exact. 
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Final Challenge: Power Dissipation 
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Combined ADC/Serializer Saves Power 
(and reduces the footprint) 
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Custom ADC/Serializer 

• By combining the ADC and the serializer, we can replace the resistively-
terminated, off-chip LVDS lines with on-chip high-impedance traces to save 
power. 

– In the process, reducing the pin count and package size by an order of magnitude. 

 
• Could also save a lot of power simply by sampling at 4-bits resolution 

instead of 8-bits. 
– Gives wider bandwidth for the same aggregate bit rate. 
– Resolution-agnostic ADC architecture? 
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• Deserializer 
– Automatic, on-chip clock-recovery 

and word alignment 
– Adjustable word sequencing 

• ADC+Serializer 
– High-speed 
– Low-power 
– Small footprint 
– Programmable bit-resolution 

Proposed Custom Chipset for 
Unformatted Serial Links 
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