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Enoch et al. (2006) 

1.3 mm continuum 

Perseus Molecular Cloud 
Sadavoy et al. (2014) 

 Herschel Gould Belt Survey 
(HGBS):  
  - 15 clouds (0.1-0.5 kpc) over 461 
hr  
  - PACS + SPIRE 

3 pc 

160, 250, 500 μm 



Hennemann et al. (2012) 

Cygnus X - 
North 

 Herschel OB Young Star Survey 
(HOBYS):  
    - 15 clouds (0.7-3.0 kpc) over 126 hr  
    - PACS + SPIRE 

70, 250, 500 μm 



Image by R. Friesen; Pattle et al. (2014, in prep) 

 JCMT Gould Belt Survey (JGBS):  
 - 12 clouds (0.1-0.5 kpc) over 662 
hr     
 - SCUBA-2 (ongoing!) + HARP  

Ophiuchus 
850 μm 



Dust emission traces mass in clouds very well: 
 
• Spitzer (3.6 – 8 μm, 24 – 160 μm) traced Class 0/I, II, III 
populations 
 

• Herschel (70 μm – 500 μm) traced cores + filaments, Tdust + N(H2) 
 
• JCMT (450 μm + 850 μm) traces cores + filaments, β, Tdust + N(H2) 

Herschel Space 
Observatory 

Spitzer Space Telescope James Clerk Maxwell Telescope 

Tracing YSOs, Cores and Filaments 



Image by J. Di Francesco 

YSO – Filament Spatial Correlations 

SCUBA-2 850 μm 

Orion A Integral Shaped Filament 

Are filaments spatially correlated with young stellar 
objects? 
 
Direct comparisons of YSO and filament populations can 
provide answers… 



Salji et al. (2014, submitted) 

Integral Shaped 
Filament 

• filaments are far more spatially correlated with “protostars”       
   (Class 0/I objects) than with “disks” (Class II objects) 

Filament 26 

Integral Shaped 
Filament 

850 μm and 
detected filaments 

YSO – Filament Spatial Correlations 



Salji et al. (2014, submitted) 

Integral Shaped 
Filament 

• filaments are far more spatially correlated with “protostars”       
   (Class 0/I objects) than with “disks” (Class II objects) 

Filament 26 

Integral Shaped 
Filament 

YSO – Filament Spatial Correlations 



YSO – Filament Spatial Correlations 
Polaris Flare (no 
SF) 

Aquila Rift (active 
SF)  

PACS + SPIRE: 160, 250, 500 
μm 

PACS + SPIRE: 70, 160, 500 
μm 

Ward-Thompson et al. (2010); Könyves et al. (2010) 



Mid-scale curvelet components of column density maps (H2/cm2)   
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YSO – Filament Spatial Correlations 
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▵  Prestellar cores 

Aquila Rift 

YSO – Filament Spatial Correlations 

>90% bound cores associated with dense filaments! 

✫  Class 0 protostars 



Density Thresholds for SF in 
Filaments 

cf. Onishi et al. (1998; Taurus), 
Johnstone, Di Francesco & Kirk (2004; 

Ophiuchus)  André et al. (2014) 

Extinction 
threshold for star 

formation: 
 

~ 80% of 
prestellar cores 

found at  
Av ≥  8 or 

Σo = 130 M/pc2 

AV = 8 

Is there a  
density 

threshold 
for star 

formation
? 



• Core formation occurs primarily 
  due to fragmentation of parent    
  filaments  
   
• mass per unit length Mline of    
  isothermal cylinder (Ostriker  
  1964; Inutsuka & Miyama 1997) 
 
• cylinders unstable if: 
 
      Mline > Mline, crit = 2cs

2/G  
 
     ~ 16 M/pc at 10 K 
 
• if Σo = 130 M/pc2, W = 0.1 pc,     
     then Mline ~ 13 M/pc  
 
 André et al. (2010) 
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Aquila Rift 

Density Thresholds for SF in 
Filaments 



Polaris Flare (no 
SF) 

Aquila Rift (active 
SF)  

• Polaris: AV > 1-2, no 
supercritical     
  fil t   / t  f ti  

• Aquila: AV > 8 filaments dense  
  enough to fragment into cores  

Density Thresholds for SF in 
Filaments 



Density Thresholds for SF in 
Filaments 

“Threshold” boundary is smooth for 
three reasons: 
 
1) Projection effects 
      - filaments not all in plane of sky 
      - leads to overestimate of Σobs by     
        <1/cos i> ~ 1.57  

 
2) Factor ~2 variation around typical 

filament width of 0.1 pc 
 
3) Filaments are not isothermal and 

have non-thermal components, 
      - need 2σtot

2/G instead 
      - observed threshold for filaments 
        more like 16-32 M/pc 
 

André et al. (2014) 

B213 filament  
Palmeirim et al. (2012) 

see also 
Arzoumanian et al. 

(2011) 



Density Thresholds for SF in 
Filaments 

…but wait!  Contrary recent results? 

• Salji et al. (2014)  
  used SCUBA-2 850  
  + 450 μm + HARP  
  C18O 3-2 data to  
  determine Mline and  
  critical Mline of ~30   
  Orion ISF filaments 
 
• find ~50% are sub- 
  critical by a 
factors  
  up to 10 yet clearly  
  have associated  
  Class 0/I objects 

Salji et al. (2014, submitted) 

Comparison with Herschel data needed! 

Orion ISF Filament 26 



Density Thresholds for SF in 
Filaments 

Benedettini et al. (2014, in preparation) 

 

• ”star-forming cores” are still seen in the “sub-critical” filaments 
•  only local super-criticality needed, average values can be 
misleading 
• filaments still provide base environment for SF core mass growth 

Lupus 1 

Red = spine  
X = starless 
core 

Green 
 = FWHM     

X = protostar 

Lupus 1, 2, 4 Grey = N(H2) 

Low N(H2) ~ 
low mass 
SF? 



• shape of CMF very similar to IMF (ε ≈ 0.3) 
• slope of high-mass end α ≈ -1.5 ± 0.2 and Salpeter = -
1.35 André et al. (2010); GBS 

~360 prestellar 
 cores 

Filaments Define the CMF 

Is there a 
connection 
between 
filaments 
and the 
CMF? 



André et al. (2014; PPVI) 

Filaments Define the CMF 

• isothermal cylinder on verge of  
  global collapse: Mline ~ 16 M/pc  
  (at 10 K) and diameter ~ 0.1 pc 
• segment of 0.1 pc length will have  
  mass of 3 × MBE = 1.6 M ; is  
  locally unstable 
• in filaments, local collapse favoured  
  over global collapse (Pon et al. 2011),  
  leading to segmentation into 
spherical  
  cores 
 
• in Aquila, CMF peak is 0.6 M, 
similar  
  to local critical BE mass of 0.5 M  
• gravitational fragmentation at the 
heart  
  of the IMF (Larson 1985) confirmed? 



• high-mass end of the L1641 CMF comes from on-filament cores 
• low-mass end comes from both on-filament and off-filament 
cores 
• relationship between denser filaments and higher-mass stars? Polychroni et al. (2013) 

Filaments Define the CMF 
Orion  
L1641 

On-filament ~ 70% 
Off-filament ~ 30% 



André et al. (2014; PPVI) 

Orion  
L1641 

Filaments Define the CMF 
High-mass end of the CMF? 
 
• power spectrum of initial density 
  fluctuations (Inutsuka 2001): 
 
  if P(k) = |δk|2  ~  k -1.5, then 
  α  ~ 2.5 (“Salpeter”) 
 
• filaments have power-law Mline 
  distribution (Arzoumanian et al.): 
   
   if dN/dlogMline ~ Mline

-1.2 above 
   20 M/pc, width ~ 0.1 pc, and 
   σtot ~ Σ0.5 (as observed), then  
   αBE

  ~ 1.2 (“Salpeter”) PACS + SPIRE: 160, 250, 350 
μm 



Vela C 

3 pc 

Hill et al. (2011) 

• What is the connection between filaments and high-mass 
star  
  formation? 

High-mass SF and Dense Filaments 

PACS + SPIRE: 70, 250, 500 
μm 



Vela C 

70, 160, 250 μm 

3 pc 

Hill et al. (2011); Minier et al. (2012) 

• disorganized networks (‘nests’) and dominating ‘ridges’ 
show  
     relative importance of turbulence vs. gravity 
• high-mass stars only found in ‘ridges’ ; filaments of AV > 
100 

RCW36 

x 13 MDCs 
Centre-
Ridge 

RCW34 

Vela C 

South-Nest 

High-mass SF and Dense Filaments 



Hennemann et al. (2012), Schneider et al. (2010), Peretto et al. (2012) 

• ridges formed and fed by sub-filament merging 
• sub-filaments also surround (feed?) dominant clump in Pipe Nebula 

4 pc 

DR 21 ridge: 104 M B59 clump: 102 M 

High-mass SF and Dense Filaments 
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High-mass SF and Dense Filaments 

PACS + SPIRE: 70, 250, 500 
 



High-mass SF and Dense Filaments 



Rosette Molecular Cloud 
70, 160, 250 μm 

Schneider et al. (2012) 

known IR 
clusters ( ) and 

massive dense 
clumps (    ) 

curvelet N(H2) map 
+ DisPerSE-
identified filaments 

• massive clumps  
  and IR clusters     
  found at filament    
  junctions 
 
• mass flow into  
  junction regions        
   more clustered  
  star formation? 

High-mass SF and Dense Filaments 



• the youngest protostars and pre-stellar cores are indeed 
spatially            correlated with the filaments in nearby clouds 

• the densest filaments (AV > 8) primarily are able to produce the 
cores in molecular clouds that form stars 

• filaments produce the higher mass cores that fill out the CMF, 
peak of CMF from gravitational fragmentation 

• high-mass end of CMF may come from power spectrum of initial 
density perturbations or dense filament Mline power law 
distribution 

•high-mass stars form in clusters found either in ridges (very 
dense filaments) or at the dense junctions of filaments 

Summary 



The Future: Kinematic Studies 
• with continuum studies  
  (nearly) complete, need line 
  studies to determine filament 
  kinematics: 
 
  - N2H+ (Hacar & Tafalla 2013) 
 
  - NH3 (Li et al. 2013; future  
    GBT + JVLA survey?) 
  - cyanopolyynes (eg., HC7N;  
    Friesen et al. 2013) 
  - CCS (Swift et al. 2005) 
 
  - C18O (Buckle et al. 2012) 
  - HCO+ / HCN (future JCMT  
    survey?) 

Serpens South Cluster 

Friesen et al. (2013) 
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