

The Milky Way Skeleton

Catherine Zucker (U. of Virginia)

With advisors

Cara Battersby (CfA)

Alyssa Goodman (CfA)

NRAO Filaments: October 11, 2014

"Bones" of the Milky Way

There are certain very long, very thin infrared dark clouds (IRDCs) which

- 1) Lie within the physical Galactic mid-plane
- 2) Trace significant spiral features in p-p-v space
- 3) Can be used to map the "skeleton" of the Milky Way Galaxy

"Nessie": The first "Bone" of the MW?

Alyssa Goodman, Harvard-Smithsonian CfA, The Bones of the Milky Way, milkywaybones.org

Nessie runs down the "spine" of the **Scutum-Centaurus** Arm, as best we can measure its position in CO position-velocity space.

Goodman et al. 2014

Nessie lies within a few pcs of the physical Galactic mid-plane

What do the simulations say?

0.10

Rowan Smith, Goodman et al. 2014

Can we find other bones of the Milky Way?

Bone Criteria

- 1. Mid-infrared extinction feature
- 2. Roughly parallel to the Galactic plane
- 3. Within 20 pc of the physical Galactic midplane
- 4. Projected aspect ratio greater than or equal to 50:1
- 5. Contiguous in velocity space and within 10 km/s of the global-log spiral fit to any Milky Way arm

10 plausible candidates identified through visual search

Extracting Velocity Information

- HOPS catalog (NH₃ emission) → high density gas tracer
- MALT90 catalog (N₂H+ emission) → high density gas tracer
- GRS spectra (high resolution CO emission)
 - filling gaps in velocity info along filaments

10 plausible candidates identified through visual search

Strongest bone candidates \rightarrow filaments 1,3,5

Filament 5: Nessie's 1st Quadrant Counterpart

Filament 5: Runs down the spine of Scutum in P-P-V Space

Filament 5: Within 15 pc of the physical Galactic mid-plane

Conclusion

- We visually identified ten potential Milky Way "bones"
- Of several strong candidates, filament 5 is the most "Nessie-like"
- Other candidates could be spurs, feathers, or interarm filaments
- Nessie is NOT a "curiosity"

Questions?

Future Work

- Calculate physical aspect ratio of all candidates
- Statistical analysis—how many false positives should we expect?
- Look to simulations for more answers

IAU mid-plane (b=0) ZSun physical mid-plane

Filaments 1 & 3: "Spines" of Scutum as traced by low density CO emission

Candidates 1 & 3: Better localized fits to CO emission?

Filament 1: Within 10 pc of the physical Galactic mid-plane

Filament 3: Within 20 pc of the physical Galactic mid-plane

Filament 5: Within 15 pc of the physical Galactic mid-plane

