Future Challenges Related to Star and Planet Formation

Edwin Bergin University of Michigan

Molecules and Star/ Planet Formation

- We as a field need to connect to exoplanets as the largest growth area in astrophysics.
- Two ways to accomplish this
 - Composition of giant planet atmospheres
 - Bulk/surface composition of terrestrial planets
- All relate to formation.....
- New capabilities: Space based submm/far-IR, expand VLA, enhance ALMA

Beyond our solar system: C/O Ratio

Caveat: assuming some O in silicates but does not include organics (C-rich + O) and additional unidentified oxygen component

Oberg, Murray-Clay, & Bergin 2011

C/O Ratio

Inside water snow-line: volatiles in gas. $C/O = (C/O)_{\odot} \sim 0.5$

CO in gas, water, CO₂ in ice Gas: C/O ~ 1 Ice: C/O < (C/O)₀

Need to isolate snow-lines of major condensibles: water, ammonia, carbon monoxide, carbon dioxide, molecular nitrogen

n ice))_⊙

Ice: C/O << (C/O) $_{\odot}$

Oberg, Murray-Clay, & Bergin 2011

Carbon

Carbon

Nitrogen

On the way to making the Earth there is a tale of successive depletion of major elements - need to track origins and abundances of major carriers

Locating Snow-Lines

- Methods:
 - Infer temperature profile and assume ice/vapor transition at sublimation temperature

— HL Tau

- Indirect inference from unresolved data spanning a range of molecular excitation states
 - Spitzer (hot water) + Herschel (cold water)
- ➡ Direct imaging
 - SMA, NOEMA, ALMA

Water and CO Snow-line

- H₂O snow-line (T_{dust} ~150 200 K)
 - ➡ close to the star (~1-3 AU)
 - strongest transitions need space-based observation (e.g. Spitzer/Herschel)
 - ➡ see Zhang+ 2013; Du+ 2015; Blevins+ 2015, in. prep.)

Oxygen in TW Hya

Water and CO Snow-line

- H₂O snow-line (T_{dust} ~150 200 K)
 - ➡ close to the star (~1-3 AU)
 - ➡ JWST cannot do this alone!! need access to cold transitions from space
 - OR!!!! could add dishes to ALMA to increase sensitivity —- ALMA 2.0 — resolve the most important chemical transition!

Water and CO Snow-line

- CO snow-line (T_{dust} ~ 20 40 K)
 - ➡ greater distances from star (tens of AU)
 - can be resolved with ground-based telescopes
 - → numerous stable C and O isotopes to reduce optical depth (¹²C¹⁶O, ¹³C¹⁶O, ¹²C¹⁸O, ¹²C¹⁷O, ¹³C¹⁸O, ¹³C¹⁷O)

TW Hya CO Snow-line $N_2H^+ + CO \Rightarrow N_2 + HCO^+$

Schwarz+ 2015, in prep.

Qi+ 2013

TW Hya CO Snow-line Schwarz+ 2015, in prep.

$C^{18}O J = 3-2$

¹³CO 6-5, 3-2, C¹⁸O 6-5, 3-2 & abundance analysis CO surface snow-line = 25 - 30 AU; midplane ~20 -25 AU

Protoplanetary Disk Gas Mass

- Linchpin for determination of chemical abundances
- Cannot trace H₂ directly need to use proxies
 - thermal emission from dust grains at mm/sub-mm
 - ➡ thermo-chemical modeling of CO gas emission

important question: If we measure abundance in emissive layers (excluding freeze out zone) - is it low gas mass or low abundance?

Missing C,O or H_2 ?

Low CO/dust & CI/dust

(Chapillon+ 2008; Dutrey+ 2003; Tsukagoshi+2015; Kama + 2015)

- Cold water emission survey no detections beyond TW Hya and HD100546 (Hogerheijde+ 2011; Du et al., in prep.)
- C⁺ detected in 27% of 47 T Tauri stars (Dent et al. 2013)
- O I less emissive compared to continuum in 21 disks (Keane et al. 2014)

Herschel Detection of HD towards TW Hya

➡ HD is a million times more emissive than H₂ at T ~ 20 K.

➡ Atomic D/H ratio inside the local bubble is well characterized (~1.5 x 10⁻⁵)

➡More direct measurement of disk gas mass (~0.05 M_☉)

➡ Caveat: strong T dependency

Bergin et al. 2013

Surface CO Snow-line

Schwarz et al. 2015, in prep.

Mass Distribution

HD and C¹⁸O in TW Hya

- Favre et al. 2013
 - ➡ Emission ratio $F_{J=2-1}(C^{18}O)/F_{J=1-0}(HD)$ is proportional to the CO abundance
 - Excitation
 - -HD will not emit if $T_{gas} < 20 \text{ K}$
 - -CO freezes onto grains if $T_{gr} < 20$ K
 - ➡ CO Abundance < 10⁻⁵ (+ confirmed by ALMA observations Schwarz et al. 2015, in prep.)
 - → Same result for water (Du et al. 2015).

Where is the O and C

Possible Mechanism

- radial + vertical pressure gradients
- dust settling + growth + radial drift
- sequesters
 volatiles in
 midplane (more
 water than CO)
- particles must
 be large enough
 to frustrate
 feedback

Evidence for Radial Drift

Andrews 2015

Consequences:

- 1. Dust mass and surface density concentrated vertically and radially
- 2. Ices must follow
- 3. What about larger grains expanded VLA!

We are tracking the implantation of ices that seed terrestrial worlds!

What about Nitrogen?

Salinas et al. 2015, in prep.

- Trace N_2 via N_2H^+ cannot measure inside CO snow-line!
- \bullet Cannot get NH₃ we will NOT know what is going on with N
- emission is very weak need expanded VLA

- Far-IR/Space:
 - Survey of HD emission in disks using a sensitive Far-IR telescope is central to science case for a future instrument
 - ➡ Could survey hundreds of systems and obtain real statistics.
- Expanded VLA:
 - ONLY way to set any constraints on nitrogen the 5th most abundant element, a key biogenic element, major constituent of our atmosphere
 - ➡ needed to probe dust evolution
- ALMA 2.0
 - Could resolve water snowline most important chemical/physical transition in the disk