Open Questions in Star Formation

Radio Futures, Chicago, 2015

Open Questions

I. What is the origin of the Stellar Initial Mass Function?

2. What is the Role of Star Formation Feedback?

3. How do Molecular Clouds Form?

All Together Now

WHAT IS THE ORIGIN OF THE IMF?

IMF SAMPLING

Offner 2015 IAU Review

Resolved IMF: Universal

Poisson errors - do not include systematic errors

IMF Appears Universal in Young Clusters

Chabrier 2005 IMF -- not a fit

> Offner et al. PPVI Figure credit: E. Moraux

Resolved IMF: Universal

Bastian, Covey, Meyer 2010

-"Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a "universal" IMF" - Bastian, Covey, Meyer 2010, ARAA

- No systematic variations found in High-Mass end in M31 **(Weisz et al. 2015)**

Arrows = completeness limit

CMF and the IMF

- Dense cores are suspected precursors of stars (star systems)
- Core mass function (CMF) is shifted by ~1/3 compared to the stellar IMF

How much does Turbulence MATTER? The IMF...

is

is sort of

is not

Padoan & Nordlund Hennebelle & Chabrier Hopkins Myers, McKee, Klein Cartwright & Whitworth P. Myers Adams & Futuzzo Offner & McKee Krumholz

Clark, Bonnell, Klessen, Smith Stamatellos & Whitworth B. Elmegreen

Manifest Destiny

Central Limit Theorem

...determined by the Core Mass Function (CMF)

Multiplicity

- Cores form multiple stellar systems.
- What if protostellar multiplicity varies with core mass?

Offner et al. PPVI

WHAT IS THE ORIGIN OF THE STELLAR IMF?

- Cores: High-sensitivity (M<0.08 Msun), high-resolution ($\Delta x \le 0.01$ pc out to 500 pc) continuum (\ge 850 um) observations
- Cores: High-resolution, spectroscopic dense gas surveys ($\Delta v \leq 0.05 \text{ km/s}$): e.g., NH₃, N₂H+
- Protostars: <0.1" resolution to study multiplicity
- Synthetic Observations: evidence of CMF universality or systematic variation

Open Questions

I. What is the origin of the Stellar Initial Mass Function?

2.What is the Role of Star Formation Feedback?

Heating, Ionization, Pressure, **Outflows, Winds**...

3. How do Molecular Clouds Form?

- Interact with the cloud (global)

NGC 1333 ~150 YSOs Image: Gutermuth & Porras

Protostellar Outflows

HH 46/47

- Interact with parent core (local)

Spitzer Velusamy et al. 07 0.lpc

Hα [SII] Walawender, Bally, Reipurth et al. 06

Spitzer/IRAC Jorgensen et al. 08

ALMA

- Wide angle wind + episodic jet

- Outflow momentum can disperse parent core

Zhang, Arce, Mardones et al. in prep.

Protostellar Outflows & Cores

"Isolated" Star Forming Core

 $M_{core} = 4 Msun$

Outflow Mass Evolution

Offner & Arce 2014

• Stage 0 Defn: M*< M_{env}

- Sim. Stage 0 ~ 0.1 Myr
- Obs. Class 0 ~ 0.1 Myr (Enoch et al. 08)

 $f_{wind} = 0.2$ theta = 0.01

B5 Star-Forming Region in I3CO(I-0)

Shells

DEC

velocity

RA 🗲

CPS 12

Stellar Winds

Perseus Molecular Cloud Arce et al. 2011

See also: Swift & Welsch 2008, Narayanan et al. 2008, Nakamura et al. 2012 Lei et al. 2015

Wind Simulation

t = 4.947 Myr

Offner & Arce 2015

lpc

Which statistics can identify feedback?

Gaches, Offner, Rosowlosky, Bisbas 2015

Radiative

Transfer

RADMC-3E

"Obser

Proof of Concept: Winds

Wind features appear in Principle Component Analysis

WHAT IS THE ROLE OF Stellar Feedback?

- Outflows: High-sensitivity, high-resolution ($\Delta x \leq 2$ ") continuum (≥ 850 um) and spectroscopic ($\Delta v \leq 0.2$ km/s) observations
- Turbulence: High-resolution ($\Delta v \le 0.05$ km/s, $\Delta x \le 0.01$ pc) ¹²CO and ¹³CO maps
- Synthetic Observations: robust statistics, parameter studies

Open Questions

I. What is the origin of the Stellar Initial Mass Function?

2. What is the Role of Star Formation Feedback?

3. How do Molecular Clouds Form?

Origin Scenarios

Colliding Flows / GMC collisions

t = 0.76 Myr

Heitsch et al. 2008 (see also Audit & Hennebelle 2005, Vazquez-Semadeni et al. 2007, Tasker & Tan 2009)

Origin Scenarios

Kim, Ostriker, & Stone 2002

Gravitational Instability / Magnto-Jeans Instabiliy

> Dobbs, Pringle & Burkert 2011

Origin Scenarios

Parker Instability

Mouschovias et al. 2009 (see also Franco et al. 2002 Kim & Ostriker 2006)

HOW DO MOLECULAR CLOUDS FORM?

- Simulations: Full physics (gravity, radiation, MHD) modeling from galaxies down to sub-pc scales; emission predictions for each scenario
- Context: HI/CO/HCN emission maps of other galaxies
- Transition to Molecular Gas: Detailed photodissociation region (PDR) maps of local clouds in H/C/C+

Open Questions

I. What is the origin of the Stellar Initial Mass Function?

2. What is the Role of Star Formation Feedback?

3. How do Molecular Clouds Form?