

Study Planet Formation with Future Radio Telescopes

Andrea Isella Rice University

ALMA observations of Protoplanetary disks

Reveal large scale perturbations on the disk structure possibly caused by the tidal interaction between young planets and the circumstellar material

Hydrodynamic simulation

Dust continuum emission between 345-690 GHz Resolution of 0.2", corresponding to 30 AU Isella et al. (2013) Perez et al. (2014) Van der Marel et al. (2015)

The optical depth problem

The regions where most of the planets form are optically thick at the wavelengths covered by ALMA.

The optical depth problem

The regions where most of the planets form are optically thick at the wavelengths covered by ALMA.

How do we access planet forming regions?

Longer wavelengths

$\tau_d \propto \lambda^{-1}$ $\lambda > 3 \,\mathrm{mm}$ $\nu < 100 \,\mathrm{GHz}$

How do we access planet forming regions?

Longer wavelengths

$\tau_d \propto \lambda^{-1}$ $\lambda > 3 \,\mathrm{mm}$ $\nu < 100 \,\mathrm{GHz}$

... but not to long.

 $I_{\nu} \propto \lambda^{-3}$ $\lambda < 6 \,\mathrm{cm}$ $\nu > 5 \,\mathrm{GHz}$

high angular resolution

 $\lambda = 1\,\mathrm{cm}\ \theta < 1\,\mathrm{AU}\ \theta < 0.008''$

 $D > 250 \,\mathrm{km}$

How do we access planet forming regions?

A view of the HL Tau disk at 1 cm

Available on arXiv>astro-ph

Next Generation Very Large Array Memo No. 5 Science Working Groups **Project Overview**

Next Generation Very Large Array Memo No. 6 Science Working Group 1 The Cradle of Life

C.L. Carilli^{1,13}, M. McKinnon¹, J. Ott¹, A. Beasley², A. Isella³, E. Murphy⁴, A. Leroy⁵, C. Casey⁶, A. Moullet², M. Lacy², J. Hodge⁷, G. Bower⁸, P. Kent², B. Clark¹, B. Butler¹

Andrea Isella¹, Charles L. H. Hull^{2,3}, Arielle Moullet⁴, Roberto Galván-Madrid⁵, Doug Johnstone⁶, Luca Ricci², John Tobin⁸, Leonardo Testi⁷, Maite Demorest¹, C. Hull⁹, M. Hughes¹⁰, J. di Francesco¹¹, D. Narayanan¹², B. Beltran²², Joseph Lazio⁹, Andrew Siemion^{10,23,24}, Hauyu Baobab Liu¹¹, Fujun Du¹⁶, Karin I. Öberg², Ted Bergin¹⁶, Paola Caselli^{14,15}, Tyler Bourke¹⁷, Chris Carilli^{12,25}, Laura Perez¹², Bryan Butler¹², Imke de Pater¹⁰, Chunhua Qi², Mark Hofstadter⁹, Raphael Moreno¹³, David Alexander¹, Jonathan Williams¹⁸, Paul Goldsmith⁹, Mark Wyatt¹⁹, Laurent Loinard⁵, James Di Francesco⁶, David Wilner², Peter Schilke²⁰, Adam Ginsburg⁷, Álvaro Sánchez-Monge²⁰, Qizhou Zhang², Henrik Beuther²¹