The Structure of Dark Molecular Gas in the Galaxy

I - A Pilot Survey for 18-cm OH Emission near L \approx 105°, B \approx +1°

Ron Allen – Space Telescope Science Institute and Johns Hopkins University Dave Hogg - National Radio Astronomy Observatory Philip Engelke - Physics/Astronomy, JHU

Introduction

- Some personal history.
- Why is this interesting?
- Where do we look?
- What tracer do we use?
- What did we do?
- What did we find?
- What are we doing next?

GBT OH Pilot program 2013

3 X 9 grid centered at: L = 105.0°, B = +1.0° $\Delta L = \Delta B = 0.5^{\circ}$ (undersampled -GBT FWHM $\approx 8' @ 18 \text{ cm}$) $1' \approx 1 \text{ pc}$ at Perseus Arm

NRAO Green Bank Telescope

Galactic rotation separates features in V along the LOS:

- Local gas: $V_{LSR} \approx 0 \text{ km/s}$
- Perseus: V_{LSR} ≈ -65 km/s
- Outer: $V_{LSR} \approx -100 \text{ km/s}$

Distances along LOS known in parsec by triangulation:

Sept 2015 - Green Bank

Area of our Blind OH Survey on the CO(1-0) All-Sky Map ...

Dame, Hartmann, & Thaddeus 2001

What did we do?

- 3 X 9 grid of GBT pointings near L=105, B=+1, on 0.5° spacing, straddling the Galactic Plane.
 - 66 hours requested.
 - L-band: 1420/1665/1667/1720 MHz
 - frequency-switching mode
 - 2-hour integrations at OH, final sensitivity of ≤ 3.5 mK rms in 0.55 km/s channels
 - 5-min integrations at HI
 - GBT FWHM: 8.9' at HI, 7.6' at OH
- CO data available at 8.4' FWHM
 - CfA archives Dame et al. 2001
 - observe at same pointing positions
 - region chosen to be faint in CO

		-				-							
Galactic Latitude	3		+	+	+								
		-	+	+	+	-							
	2	-	+	+	+								
		-	+	+	+								
	1	-	+	+	+								
		- - - -	+	+	+								
	0	- - - -	+	+	+								
			+	+	+								
	-1	- - -	+	+	+								
			.			-							
106.0 105.5 105.0 104.5 104.0 Galactic Longitude													
			Jaiactic	Galactic Longitude									

What did we do?

- 3 X 9 grid of GBT pointings near L=105, B=+1, on 0.5° spacing, straddling the Galactic Plane.
 - 66 hours requested.
 - L-band: 1420/1665/1667/1720 MHz
 - frequency-switching mode
 - 2-hour integrations at OH, final sensitivity of ≤ 3.5 mK rms in 0.55 km/s channels
 - 5-min integrations at HI
 - GBT FWHM: 8.9' at HI, 7.6' at OH
- CO data available at 8.4' FWHM
 - CfA archives Dame et al. 2001
 - observe at same pointing positions
 - region chosen to be faint in CO

		-				
Galactic Latitude	3	- - - -	+	+	+	-
		-	+	+	+	
	2	-	+	+	+	
		-	+	+	+	
	1		+	+	+	
		-	+	+	+	
	0	- - 	+	+	+	
		-	+	+	+	-
	-1		+	+	+	
	10	6.0 1	05.5 1 Galactic	05.0 1	04.5 ude	 104.0

What did we do?

- 3 X 9 grid of GBT pointings near L=105, B=+1, on 0.5° spacing, straddling the Galactic Plane.
 - 66 hours requested.
 - L-band: 1420/1665/1667/1720 MHz
 - frequency-switching mode
 - 2-hour integrations at OH, final sensitivity of ≤ 3.5 mK rms in 0.55 km/s channels
 - 5-min integrations at HI
 - GBT FWHM: 8.9' at HI, 7.6' at OH
- CO data available at 8.4' FWHM
 - CfA archives Dame et al. 2001
 - observe at same pointing positions
 - region chosen to be faint in CO

HI, OH 1667, and CO Profiles at B = 3.00

L = 105.5

L = 105.0

L = 104.5

Sept 2015 - Green Bank

HI, OH 1667, and CO Profiles at B = 3.00

L = 105.5

L = 105.0

L = 104.5

Sept 2015 - Green Bank

Sept 2015 - Green Bank

Sept 2015 - Green Bank

Sept 2015 - Green Bank

Sept 2015 - Green Bank

Sept 2015 - Green Bank

Main line ratios are 5/9 (LTE)

Sept 2015 - Green Bank

Main line ratios are 5/9 (LTE)

Sept 2015 - Green Bank

Spatial structure varies rapidly ...

Sept 2015 - Green Bank

A few profiles show anomalies ...

-50

LSR Radial Velocity (km/s)

0

Sept 2015 - Green Bank

-150

-100

50

... which turn out to be known things.

Wolak et al (2012)

What did we find? - I

- We have confirmed the ubiquity of faint OH emission in the Galaxy. The GBT data is more sensitive and has a wider velocity coverage than our earlier survey with the Onsala telescope:
 - OH identified in more than 23 of the total of 27 pointings.
 - 55 separate OH features found, corresponding with familiar features of Galactic structure: the Local Arm, the Interarm, and the Perseus Arm.
- (almost) All 1667 MHz OH features correspond with peaks in the HI profiles at the same positions:
 - but not every peak on an HI profile shows up in OH (sensitivity?)
- CO is generally faint or absent. This is in part a result of the location chosen for this blind survey, but the contrast is striking:
 - less than 1/3 of the 55 OH features show detectable CO in the CfA data.
 - there are no CO features without OH emission.

Allen, Hogg, & Engelke (2015)

What did we find? - II

- We have confirmed that the main OH lines in the quiescent Galactic ISM are generally in LTE:
 - the difference profiles (1665 1667/1.8) generally show just noise.
 - counterexamples arise from known anomalous features:
 - One of the 27 survey positions is near a known OH-IR star.
 - a narrow feature that appears in the main OH lines at nearly the LTE ratio but is enhanced at 1720 MHz may be a large-scale shock.
- The spectra show significant changes in structure from one survey pointing to the next:
 - we have clearly not resolved the structure of molecular clouds in the Perseus Arm at linear scales of ≈ 30 pc (0.5° at 3.2 kpc).

What did we NOT find?

- No absorption features were found in the area of our "blind" GBT survey.
 - consistent with the low levels of Galactic continuum emission in this direction towards the Outer Galaxy.
- Contrasts with the recent results from the SPLASH survey at Parkes (Dawson et al 2014).
 - these authors generally see OH in absorption.
 - primarily a result of the low excitation temperature of OH and the brighter Galactic continuum emission in the southern sky.
 - they do not find OH without CO.
 - primarily a result of their lower sensitivity, a consequence of shorter integration times, but also
 - the proximity of OH excitation temperatures to the ambient continuum emission reduces their ability to detect faint OH emission.

The current bottom line ...

- The 18-cm OH lines are an effective alternative as a large-scale quantitative tracer for H_2 in the ISM, at least in the Outer Galaxy.
 - OH is more sensitive to low-density regions than is CO.
 - OH reveals H_2 even in CO-poor regions.
 - OH excitation is well understood and LTE is easily verified.
- OH is a promising tracer for studying the distribution and motions of the "Dark Molecular Gas" in the Outer Galaxy.
 - It is a molecular tracer with a wide spatial distribution.
 - It can provide kinematic distance estimates using Galactic rotation.
 - Observations of OH are expected to indicate a significant increase in the estimates of H₂ mass in the Galaxy. We are working to quantify this.
- Reference to a recent publication on the GBT survey results:
 - Allen, R.J., Hogg, D.E., & Engelke, P.D. 2015, Astron. J., 149, 123.

The "To Do" List ...

- New OH observing initiatives with the GBT:
 - The "One-Square-Degree" Blind Survey (data acquired):
 - Resolve the structure of the molecular clouds in the Perseus Arm; measure sizes in parsec?
 - Establish the molecular content of a major HI feature in Galactic spiral arms (*in progress*):
 - detect the "Rolling Motion" of spiral arms in H₂.
 - Address the question: To what extent do star-forming regions *really* have more H₂? (*Proposal submitted*)
 - How much of this is real, and how much is an effect of elevated excitation acting on our favorite gas mass tracers?