

* NRAO

Molecular Outflows and Infall towards a Sample of Massive Star Forming Regions

High Frequency Science Workshop, Green Bank 21st September 2015

<u>Nichol Cunningham (NRAO-GBT)</u>, Stuart Lumsden (University of Leeds), Claudia Cyganowski (University of St Andrews), Luke Maud (Leiden Observatory), Cormac Purcell (University of Sydney)

Massive Star Formation and Molecular Outflows

- Why are they important?
- Important in removing angular momentum and potentially set the final mass of the central star.
- Bipolar molecular outflows are found across all forming stellar size scales, including brown dwarfs (e.g. Whelan 2006).
- Observed correlation in their properties (e.g. Mass, momentum, force and energy) from low to high mass regime (e.g. Bertout and Cabrit 1992).
- Different tracers possibly an evolutionary indicator?

The Sample

- Drawn from the RMS survey (Lumsden et al. 2013)
 http://www.ast.leeds.ac.uk/RMS/.
- 30 sources observed with the JCMT (~15" resolution) for SiO (8-7), HCO+(4-3) and H13CO+(4-3) (~350-GHz).
 - All had previously confirmed CO (3-2) outflows (Maud et al., 2015)
 - SiO "active" outflow tracer.
 - In the low mass regime SiO is more prominent in the Class 0 sources.
 - Observations show SiO luminosity and abundances increasing with evolution (e.g. Klaassen et al.2011)
- Additional follow-up observations at 1.3mm (230-GHz) with the SMA (3" resolution)
 - G203.3166/NGC 2264-C (Cunningham et al. Submitted MNRAS)
 - G194.9349-IRAS 06103+1523
 - SiO (5-4), CO (2-1)
 - Plus many more lines (~30 transitions in total e.g. SO, DCN, CH3CN, CH3OH)

JCMT Survey

~55% have SiO (8-7) detection.

- •1 potential infall candidate.
- •Several additional HCO+ and SiO components Offset from the RMS source
- •What are the differences in the detected non-detected sources?
- •Prominence of SiO towards younger regions, based on 70micron/22micron flux and Lbol/M ratios
- •Follow-up high resolution observations of two regions, one without SiO and one with SiO

JCMT Survey

- ~55% have SiO (8-7) detection.
- 1 potential infall candidate.
- What are the differences in the detected non-detected sources?

- Prominence of SiO towards younger sources.
- The UCHII regions with SiO appear to be young.

SMA-G203.3166 / NGC 2264-C SiO (8-7) detected

RMS source 9.5Msun

(Di Francesco et al. 2008, Peretto et al.2006, HOBYS PI Motte)

SMA-G203.3166 / NGC 2264-C

SMA 1.3mm Continuum

Mass ~700Msun (Ward-Thompson et al.2000)

SMA-G203.3166 / NGC 2264-C

Red-shifted emission ~ 10 - 40 km/s Blue shifted emission ~ -20 - 4km/s Vlsr~7 km/s

SMA- G203.3166 / NGC 2264-C

G194.9349 SiO (8-7) Non-Detection

- 70 micron bright RMS source is driving the outflow
- No extended SiO component.
- Whole region molecular line weak compared with NGC2264-C

Future Work with the GBT

- Frequency range contains a multitude of molecular emission, SiO,
 HCO+, H13CO+, CS and many more.
 - Probe the infall, outflows
 - •Chemical diversity in star forming regions.
- Many of the regions in the JCMT survey (resolution ~15") indicate an offset between the SiO emission and the RMS source
 - Green bank would allow comparative spatial resolution to Herschel 70micron allow for the youngest sources in regions to be identified.
 - Need the high resolution to resolve a single core and outflow, but the single dish is needed for zero spacing and to identify the interesting objects initially to observe at higher resolution.

Summary

- Not all CO outflows have associated SiO counterpart.
- At high resolution the outflows associated with SiO are dominated by the mm brightest, molecular line weak, IR-dark sources (i.e. potentially the youngest).
- IR bright RMS source in NGC 2264-C has no obvious molecular outflow, yet it has associated CH3CN, HC3N emission and disc (e.g. Grellmann et al. 2011).
- SiO associated with youth at both low and high resolution.
 - Similar to the low mass regime.

Outflow Force vs Luminosity

Bontemps 1996 low mass Class 0 – open squares, Class I – closed squares Duarte Cabral 2014 –intermediate Class 0 - open triangles

JCMT Survey

- ~55% have SiO (8-7) detection.
- 1 potential infall candidate.
- Several additional HCO+ and SiO components Offset from the RMS source
- What are the differences in the detected non-detected sources?

