1.3 and 3 mm wavelength VLBI: probing the Event-Horizon to AU structure of Sgr A*

Gisela Ortiz
Centro de Radioastronomía y Astrofísica

with M. Johnson, V. Fish, S. Doeleman, M. Reid, L. Blackburn, A. Chael, R. Lu, J. León-Tavares, L. Loinard, J. SooHoo, L. Vertatschitsch, G. Narayanan, D. Hughes, A. Hernández, E. Castillo, and EHT collaboration
Sgr A*: black hole candidate

$M \approx 4 \times 10^6 \, M_\odot$ (Ghez et al. 2003)

$d \approx 8 \, \text{kpc}$ (Reid et al. 2009)
• Which **emission mechanism** operates in Sgr A*?

 – processes in the **accretion flow** itself?
 – **jet/outflow** originating in the accretion disk?

• Which are the evidences in favor of jets/accretion flow?
Radio properties of Sgr A*

- Linear polarization: ~10% in the sub-mm
- Variability: on time scales of days
- High brightness temperature
- Spectrum:

 Typical spectrum seen in some nearby low-luminosity galaxies

- Synchrotron emission from the jet
- Emission from the accretion flow
- Melia & Falcke 2001
Very Long Baseline Interferometry

Ultra-high angular resolution

$$\theta \sim \frac{\lambda}{B}$$

M87 jet:
VLBA, 43 GHz
Interstellar scattering

Observer

~133 pc (Lazio & Cordes 1998)
5.8±0.3 kpc (Bower et al 2014)

Galactic Center
Angular broadening of Sgr A* observed size $\propto \lambda^2$

$1.31 \text{ mas cm}^{-2} \times 0.64 \text{ mas cm}^{-2}$; P.A. $\sim 80^\circ$ (Bower et al 2006)

\[
\theta_{\text{int}} = \sqrt{\theta_{\text{meas}}^2 - \theta_{\text{scat}}^2}
\]
Determination of the intrinsic size

- Affected by poor north-south resolution of the VLBA

THE INTRINSIC TWO-DIMENSIONAL SIZE OF SAGITTARIUS A*

Geoffrey C. Bower, Sera Markoff, Andreas Brunthaler, Casey Law, Heino Falcke, Dipankar Maitra, M. Clavel, A. Goldwurm, M. R. Morris, Gunther Witzel, Leo Meyer, and A. M. Ghez

ABSTRACT

We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array observations at a wavelength of 7 mm. The intrinsic source is modeled as an elliptical Gaussian with major-axis size $35.4 \times 12.6 \, R_S$ in position angle 95° east of north. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95°. We also place a maximum peak-to-peak change of 15% in the intrinsic major-axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.

- Intrinsic size is likely not circular
3 mm VLBI

- The **Large Millimeter Telescope** (LMT)
 - High sensitivity antenna
 - Active surface for optimal operation at millimeter wavelengths

Altitude: 4,600 m
3 mm VLBA+LMT observations

- **LMT**
 - Superb geographical location relative to VLBI stations
 - Three observing seasons successfully completed
 - Robust operation as a VLBI station

![VLBI backend](image)
1.3 mm VLBI with the LMT

The Event Horizon Telescope

black hole shadow

Doeleman et al

Broderick et al 2011
Measuring the size of Sgr A*

3 mm: variable antenna gain and variable atmospheric opacity
Miscalibrated data affect reconstructed images
Measuring the size of Sgr A*

Closure quantities: independent of all station-dependent errors

\[\phi_{123} = \phi_{12} + \phi_{23} + \phi_{31} \]

\[C_{1234} = \frac{A_{12}A_{34}}{A_{13}A_{24}} \]

closure phase

closure amplitude
Intrinsic size

major = (144.8±7.0) \(\mu \)as

minor = (125.7±5.8) \(\mu \)as

Axial ratio

1.15±0.08
Frequency-dependent intrinsic size

\[\beta = 1.34 \pm 0.01 \]

\[\beta = 1.0 \pm 0.1 \]
Implications for jet models

• Intrinsic structure of Sgr A* at 3 mm is symmetric.
 – Rule-out jet models that predict an elongated morphology (axial ratio 4:1)

• Models should reproduce:
 – Frequency-dependent intrinsic size
 – Frequency-dependent anisotropy

![Graph showing relative positions and 1.6 AU scale]
Closure phases

V. Fish slide, EHT 2014
Closure phases

closure phases from 2015 LMT+VLBA observations are close to zero

EHT, 1.3 mm
California-Hawaii-Arizona triangle: nonzero median closure phase weighted mean: 6.5 ± 0.7 deg

Fish et al in prep
The addition of the GBT

- Measurement of small closure phases at 3 mm
- Study structural variability in Sgr A*
The addition of the GBT

VLBA+LTM+GBT baseline tracks

Scattering is invertible
Mitigation of scattering

1.3 mm EHT simulated image
Convolved with scattering kernel
uncorrected
corrected

Fish et al 2014
Image reconstruction of Sgr A*

3 mm VLBA+LMT data

Andrew Chael et al
Summary

• The addition of the LMT to the VLBI network has allowed precise measurement of the intrinsic size of Sgr A* at $\lambda=3$ mm.

• The intrinsic structure of Sgr A* at $\lambda=3$ mm is symmetric, with important implications in the context of jet models.

• LMT participated in the EHT run at 1.3 mm.

• The addition of the GBT will expand the capability to study structure variability, and to reconstruct images of the source.