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2 Hubble image of M51 (NASA/ESA) 
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Five Star Formation Regimes 

•  Local (Low-mass) Star Formation 
o  <0.5 kpc; Taurus, Orion, Ophiuchus 

•  High-mass Star Formation 
o  0.5-6 kpc; W3/4/5, Cygnus, Carina   

•  Galactic Plane 
o  6-30 kpc; outer galaxy (IRDCs), inner galaxy (CMZ, 

Galactic Center) 
•  Nearby Galaxies  

o  50 kpc – 15 Mpc; Local Group (LMC, SMC, M31, 
M33, and dwarf galaxies), Clusters (Virgo, Coma) 

•  High-redshift (z > 1) Galaxies 
o  LIRGs & ULIRGs, SMGs, etc. 



Dust emission traces mass in clouds very well: 
 
•  Spitzer (3.6 – 8 µm, 24 – 160 µm) traced Class 0/I, II, III pops. 

•  Herschel (70 µm – 500 µm) traced cores + filaments, Tdust + N(H2) 

Herschel Space Observatory Spitzer Space Telescope 

Tracing Star Formation with Wide-field Mapping 
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Surveys of Five Star Formation Regimes 

•  Local (Low-mass) Star Formation 
o  <0.5 kpc; c2d+GBS, H-GBS 

•  High-mass Star Formation 
o  0.5-6 kpc; Orion, W3/4/5, Cygnus, Carina; HOBYS   

•  Galactic Plane 
o  6-30 kpc; GLIMPSE-360; Hi-GAL, PCC 

•  Nearby Galaxies  
o  50 kpc – 15 Mpc; SINGS; KINGFISH  

•  High-redshift (z > 1) Galaxies 
o  S-GOODS, H-ATLAS 

Spitzer survey 
Herschel survey 
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Greene (2001); Dunham et al. (2015) 

Low-mass Star Formation (M★ < 8 M¤) 

Starless core Prestellar core Class 0 Class I 

Class II Class III ZAMS “Flat” 

0.13-0.26 Myr 0.27-0.52 Myr 

0.26-0.50 Myr 2.0 Myr (assumed) 

Based on 2966 YSOs in 18 clouds: 

c2d+S-GBS+submm data 
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Megeath et al. (2006) Spitzer 4.5, 5.8, + 24 µm image of northern Orion A 

Spitzer Observations: Orion (A) 

Class 0/I 
Class II 
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Stars form out of dense molecular gas 

8 

Lada, Lombardi & Alves (2010); see also Lada et al. (2012) 

•  Lada, Lombardi & Alves 
(2010) find a linear scaling 
between N(YSO) and the 
(H2) mass of a cloud over a 
surface density threshold 
of ~116 M¤ pc-2 

•  Interestingly, this threshold 
corresponds to a number 
density of ~104 cm-3 

 
•  SFR (M¤ yr-1) =  
      4.6 ± 2.4 × 10-8 M0.8 (M¤) 
 

Nearby SF clouds 

Mass over  
Σth ~ 116 M¤ pc-2, 

i.e., AK ~ 0.8  
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Könyves et al. (2010, 2015); Bontemps et al. (2010) Herschel 70, 160, 500 µm image of Aquila Rift 

Herschel Observations: Aquila 
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•  Core formation occurs primarily 
  due to fragmentation of parent    
  filaments  
   
•  mass per unit length Mline of an    
  isothermal cylinder (see Ostriker  
  1964; Inutsuka & Miyama 1997) 
 
•  such cylinders unstable if: 
 

      Mline > Mline, crit = 2cs
2/G  

 
         ~ 16 M¤ pc-1 at 10 K 
 
•  if Mline ~ 16 M¤ pc-1, W = 0.1 pc,     
          then  Σo = 160 M¤ pc-2 André et al. (2010); Könyves et al. (2015) 

Threshold originates from cylinder fragmentation 

1 

0.1 

M
line /M

line,crit 

1021 1022 

Aquila Rift 
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Interpretation of the K-S scaling relation 
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Bigiel et al. (2008); Kennicutt & Evans (ARAA; 2012); see also Schruba et al. (2011) 

•  Σ(gas) < 10 M¤ pc-2 : gas is 
atomic, little but some H2 / 
dense gas 

•  Σ(gas) ≈ 10-120 M¤ pc-2 : 
gas is atomic + molecular, 
latter are discrete clouds of 
constant column density  

•  Σ(gas) > 120 M¤ pc-2 : gas is 
molecular, little atomic gas 

 
  
 
 

Σ(total gas: HI + H2) 

Σ(
SF

R
) 

Unresolved clouds 
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•  is dense filament  
  fragmentation the universal  
  process defining the onset of  
  star formation in galaxies? 



Filaments also define the Core Mass Function (IMF?) 
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•  shape of CMF very similar to IMF (ε ≈ 0.3-0.4) 
•  slope of high-mass end α ≈ -1.33 ± 0.06 and Salpeter = -1.35 

~292 prestellar 
 cores 

Peak of 
lognormal fit 
= 0.47 M¤ 
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High-mass Star Formation with HOBYS 
Cygnus 

Carina Rosette NGC 6611 NGC 7538 



Vela C 

3 pc 

Hill et al. (2011) 

•  What is the connection between filaments and high-mass  
   star formation? 

PACS + SPIRE: 70, 250, 500 µm 
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High-mass Star Formation and Ridges 



70, 160, 250 μm 

3 pc 

Hill et al. (2011); Minier et al. (2012) 

•  disorganized networks (‘nests’) and dominating ‘ridges’ show  
     relative importance of turbulence vs. gravity 
•  high-mass stars only found in ‘ridges’ ; filaments of AV > 100 

RCW36 

x 13 MDCs 

Centre-Ridge 

RCW34 

Vela C 

South-Nest 
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High-mass Star Formation and Ridges 



Hennemann et al. (2012), Schneider et al. (2010), Peretto et al. (2012) 

•  ridges formed and fed by filament merging 
•  sub-filaments also surround (feed?) dominant clump in Pipe Nebula 

4 pc 

DR 21 ridge: 104 M¤ B59 clump: 102 M¤ 
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High-mass Star Formation and Ridges 



Schneider et al. (2012) 

known IR 
clusters ( ) 

and massive 
dense 

clumps (    ) 

curvelet N(H2)  
map + DisPerSE-

identified filaments 

•  massive clumps  
  and IR clusters     
  found at filament    
  intersections 
 
•  mass flow into  
  intersected regions:        
  more clustered   
  star formation? 

Molecular Clouds and Star Formation 

Ridges and Filament Intersections 

Rosette Molecular 
Cloud 

Schneider et al. (2012) 
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Herschel N(H2) Probability Density Functions 

lognormal 
(turbulence) 

Power law 
(gravitational 

infall) 
Low-mass SF 

High-mass SF 

2nd Power law  
-  feedback? 
-  rotation? 
-  B-fields? 

Schneider et al. (2013; 2015); also Russeil et al. (2013), Rivera-Ingraham et al. (2015) 
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What the GBT can do 

•  high-frequency (HF) instrumentation at GBT can enable key 
insights into high-mass SF via wide-field observations 
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What the GBT can do: MUSTANG-2 

•    provide key high-resolution observations of ridges,  
    clarifying their column density structure at ~9” FWHM 
•  combine data with those from Herschel et al. to find 

dust opacity, temperature, free-free contributions 

MUSTANG 3 mm 
continuum observations 
of OMC-2/3 Schnee et al. (2014); NRAO 

N 
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What the GBT can do: KFPA 

Herschel SPIRE/PACS observations of 
Perseus molecular cloud 

Sadavoy et al. (2014); Pezzuto et al. (2015, in prep) 

GAS (2015), in prep 

NH3 (1,1) 
integrated 

intensity of  
NGC 1333 
with KFPA 
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What the GBT can do: KFPA 

•    NH3 rotational-vibrational     
    emission traces dense gas, 
    ncrit [NH3(1,1)] ~ 103-4 cm-3  
•  Can probe:  
    - ridge dynamics, role of  
      turbulence in formation 
    - gas kinematics, flows from  
      ridges to clusters, explore  
      filament intersections 
    - LOS gas temperatures,  
      explore external heating 
    - abundances, cf. accurate 
      column densities Friesen et al. (2008) 

NH3 (1,1) from Oph B clump 
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What the GBT can do: ARGUS 

3 mm line observations of 
L1455 in Taurus from IRAM 

30 m Telescope 

Hacar et al. (2013); Tafalla et al. (2015) 
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What the GBT can do: ARGUS 

•    N2H+ rotational lines trace  
    well denser gas: 
    ncrit [N2H+ (1-0)] ~ 105 cm-3  
•  can probe:  
    - ridge dynamics, 
    - gas kinematics, 
    - abundances 
    - (not temperature) 
    at ~9” FWHM resolution 
•  NH2D (1,1) can probe 

locations where NH3/N2H+ 
lines are optically thick Filament fibres? 

Hacar et al. (2013); Tafalla et al. (2015) 



Summary 
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•    Recent surveys have revealed the YSO populations and 
    column density substructures of molecular clouds in    
    many star formation regimes 
 
•  GBT’s HF instruments will enable key insights into how 

filaments/ridges relate to star formation, by providing  
    high-resolution observations of 
       - 3 mm cont. (MUSTANG-2): dust opacity, free-free 
       - NH3 lines (KFPA): filament/ridge kinematics, dynamics 
       - N2H+ (1-0), NH2D (1,1) (ARGUS) lines: densest ridges 
 
•  High-mass star forming regions within 3 kpc are ripe for 

GBT wide-field observations 

Molecular Clouds and Star Formation 
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