NRC·CNRC

Molecular Clouds and Star Formation

James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics

National Research Conseil national de council Canada recherches Canada

Hubble image of M51 (NASA/ESA)

Five Star Formation Regimes

- Local (Low-mass) Star Formation

 <0.5 kpc; Taurus, Orion, Ophiuchus
- High-mass Star Formation
 - o 0.5-6 kpc; W3/4/5, Cygnus, Carina
- Galactic Plane
 - 6-30 kpc; outer galaxy (*IRDCs*), inner galaxy (*CMZ*, Galactic Center)
- Nearby Galaxies
 - 50 kpc 15 Mpc; Local Group (*LMC, SMC, M31, M33, and dwarf galaxies*), Clusters (*Virgo, Coma*)
- High-redshift (z > 1) Galaxies

 LIRGs & ULIRGs, SMGs, etc.

Tracing Star Formation with Wide-field Mapping

Spitzer Space Telescope

Herschel Space Observatory

NCCNRC

Dust emission traces mass in clouds very well:

- Spitzer (3.6 8 µm, 24 160 µm) traced Class 0/I, II, III pops.
- Herschel (70 μ m 500 μ m) traced cores + filaments, T_{dust} + $N(H_2)$

Surveys of Five Star Formation Regimes

- Local (Low-mass) Star Formation
 <0.5 kpc; c2d+GBS, H-GBS
- High-mass Star Formation
 - 0.5-6 kpc; Orion, W3/4/5, Cygnus, Carina; HOBYS
- Galactic Plane
 - o 6-30 kpc; GLIMPSE-360; Hi-GAL, PCC
- Nearby Galaxies
 - 50 kpc 15 Mpc; SINGS; KINGFISH
- High-redshift (z > 1) Galaxies
 - S-GOODS, H-ATLAS

Spitzer survey Herschel survey

NCCNC

Low-mass Star Formation (M_{\star} < 8 M_{\odot})

NCCNC

Spitzer Observations: Orion (A)

Stars form out of dense molecular gas

- Lada, Lombardi & Alves

 (2010) find a *linear* scaling between *N*(YSO) and the
 (H₂) mass of a cloud over a surface density threshold of ~116 M_☉ pc⁻²
- Interestingly, this threshold corresponds to a number density of ~10⁴ cm⁻³
- SFR (M_☉ yr⁻¹) =
 4.6 ± 2.4 × 10⁻⁸ M_{0.8} (M_☉)

Lada, Lombardi & Alves (2010); see also Lada et al. (2012)

NCCNRC

Herschel Observations: Aquila

HERSCHEL Build Belt Surver

NRC.CNRC

Herschel 70, 160, 500 µm image of Aquila Rift

Könyves et al. (2010, 2015); Bontemps et al. (2010)

Molecular Clouds and Star Formation

Threshold originates from cylinder fragmentation

- Core formation occurs primarily due to *fragmentation of parent filaments*
- mass per unit length M_{line} of an isothermal cylinder (see Ostriker 1964; Inutsuka & Miyama 1997)

• such cylinders *unstable* if:

$$M_{line} > M_{line, crit} = 2c_s^2/G$$

• if
$$M_{\text{line}} \sim 16 \text{ M}_{\odot} \text{ pc}^{-1}$$
, $W = 0.1 \text{ pc}$,
then $\Sigma_o = 160 \text{ M}_{\odot} \text{ pc}^{-2}$

André et al. (2010); Könyves et al. (2015)

NRC·CNRC

Interpretation of the K-S scaling relation

- Σ(gas) < 10 M_☉ pc⁻²: gas is atomic, little but some H₂ / dense gas
- Σ(gas) ≈ 10-120 M_☉ pc⁻²: gas is atomic + molecular, latter are discrete clouds of constant column density
- Σ(gas) > 120 M_☉ pc⁻²: gas is molecular, little atomic gas

• is *dense filament fragmentation* the universal process defining the onset of star formation in galaxies?

Bigiel et al. (2008); Kennicutt & Evans (ARAA; 2012); see also Schruba et al. (2011)

NRC CNRC

Filaments also define the Core Mass Function (IMF?)

• shape of CMF very similar to IMF ($\epsilon \approx 0.3-0.4$)

• slope of high-mass end $\alpha \approx -1.33 \pm 0.06$ and Salpeter = -1.35

NCCNRC

High-mass Star Formation with HOBYS

Molecular Clouds and Star Formation

NRC·CNRC

High-mass Star Formation and Ridges

• What is the connection between filaments and high-mass star formation?

Hill et al. (2011)

High-mass Star Formation and Ridges

- disorganized networks ('nests') and dominating 'ridges' show relative importance of turbulence vs. gravity
- high-mass stars only found in '**ridges**'; filaments of $A_V > 100$

Hill et al. (2011); Minier et al. (2012)

NCCNRC

High-mass Star Formation and Ridges

- ridges formed and fed by filament merging
- sub-filaments also surround (feed?) dominant clump in Pipe Nebula

Hennemann et al. (2012), Schneider et al. (2010), Peretto et al. (2012)

NCCNC

Ridges and Filament Intersections

 massive clumps and IR clusters found at filament intersections

 mass flow into intersected regions: more clustered star formation?

Schneider et Gl. (2012)

Herschel N(H₂) Probability Density Functions

What the GBT can do

 high-frequency (HF) instrumentation at GBT can enable key insights into high-mass SF via wide-field observations

What the GBT can do: MUSTANG-2

- provide key high-resolution observations of *ridges*, clarifying their column density structure at ~9" FWHM
- combine data with those from Herschel et al. to find dust opacity, temperature, free-free contributions

What the GBT can do: KFPA

NCCNRC

What the GBT can do: KFPA

- NH₃ rotational-vibrational emission traces dense gas, n_{crit} [NH₃(1,1)] ~ 10³⁻⁴ cm⁻³
- Can probe:
 - **ridge dynamics**, role of turbulence in formation
 - gas kinematics, flows from ridges to clusters, explore filament intersections
 - LOS gas temperatures, explore external heating
 - **abundances**, cf. accurate column densities

NCCNRC

What the GBT can do: ARGUS

NCCNC

What the GBT can do: ARGUS

Filament fibres?

Hacar et al. (2013); Tafalla et al. (2015)

- N₂H⁺ rotational lines trace well denser gas:
 n_{crit} [N₂H⁺ (1-0)] ~ 10⁵ cm⁻³
- can probe:
 - ridge dynamics,
 - gas kinematics,
 - abundances
 - (not temperature)
 - at ~9" FWHM resolution
- NH₂D (1,1) can probe locations where NH₃/N₂H⁺ lines are optically thick

NRC CNRC

Summary

- Recent surveys have revealed the YSO populations and column density substructures of molecular clouds in many star formation regimes
- GBT's HF instruments will enable key insights into how filaments/ridges relate to star formation, by providing high-resolution observations of
 - 3 mm cont. (MUSTANG-2): dust opacity, free-free
 - NH₃ lines (**KFPA**): filament/ridge kinematics, dynamics
 - N_2H^+ (1-0), NH_2D (1,1) (**ARGUS**) lines: densest ridges
- High-mass star forming regions within 3 kpc are ripe for GBT wide-field observations

Thanks to:

Philippe André, Vera Könyves, Arabindo Roy, Doris Arzoumanian, Derek Ward-Thompson and the Herschel Gould Belt Survey Team;

Rachel Friesen, Jaime Pineda, and the Green Bank Ammonia Survey Team;

Shu-Ichiro Inutsuka, Ralph Pudritz, and of course...

Thank you

James Di Francesco Senior Research Officer Tel: 250-363-6925 james.difrancesco@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca

