Molecular Clouds and Star Formation

James Di Francesco

September 21, 2015
NRC Herzberg Programs in Astronomy \& Astrophysics

Five Star Formation Regimes

- Local (Low-mass) Star Formation
- <0.5 kpc; Taurus, Orion, Ophiuchus
- High-mass Star Formation
- 0.5-6 kpc; W3/4/5, Cygnus, Carina
- Galactic Plane
- 6-30 kpc; outer galaxy (IRDCs), inner galaxy (CMZ, Galactic Center)
- Nearby Galaxies
- 50 kpc - 15 Mpc; Local Group (LMC, SMC, M31, M33, and dwarf galaxies), Clusters (Virgo, Coma)
- High-redshift (z > 1) Galaxies
- LIRGs \& ULIRGs, SMGs, etc.

Tracing Star Formation with Wide-field Mapping

Spitzer Space Telescope

Herschel Space Observatory

Dust emission traces mass in clouds very well:

- Spitzer (3.6-8 $8 \mathrm{~m}, 24-160 \mu \mathrm{~m}$) traced Class 0/I, II, III pops.
- Herschel $(70 \mu \mathrm{~m}-500 \mu \mathrm{~m})$ traced cores + filaments, $T_{\text {dust }}+N\left(\mathrm{H}_{2}\right)$

Surveys of Five Star Formation Regimes

- Local (Low-mass) Star Formation
- <0.5 kpc; c2d+GBS, H-GBS
- High-mass Star Formation
- 0.5-6 kpc; Orion, W3/4/5, Cygnus, Carina; HOBYS
- Galactic Plane
- 6-30 kpc; GLIMPSE-360; Hi-GAL, PCC
- Nearby Galaxies
- 50 kpc - 15 Mpc; SINGS; KINGFISH
- High-redshift (z > 1) Galaxies
- S-GOODS, H-ATLAS

Low-mass Star Formation ($M_{\star}<8 M_{\odot}$)

Spitzer Observations: Orion (A)

Spitzer 4.5, 5.8, + $24 \mu \mathrm{~m}$ image of northern Orion A

Right Ascension

Megeath et al. (2006)

Stars form out of dense molecular gas

- Lada, Lombardi \& Alves (2010) find a linear scaling between $N(\mathrm{YSO})$ and the $\left(\mathrm{H}_{2}\right)$ mass of a cloud over a surface density threshold of $\sim 116 \mathrm{M}_{\odot} \mathrm{pc}^{-2}$
- Interestingly, this threshold corresponds to a number density of $\sim 10^{4} \mathrm{~cm}^{-3}$
- $\operatorname{SFR}\left(\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right)=$

$$
4.6 \pm 2.4 \times 10^{-8} M_{0.8}\left(\mathrm{M}_{\odot}\right)
$$

Lada, Lombardi \& Alves (2010); see also Lada et al. (2012)

Threshold originates from cylinder fragmentation

- Core formation occurs primarily due to fragmentation of parent filaments
- mass per unit length $\mathrm{M}_{\text {line }}$ of an isothermal cylinder (see Ostriker 1964; Inutsuka \& Miyama 1997)
- such cylinders unstable if:

$$
\begin{gathered}
\mathbf{M}_{\text {line }}>\mathbf{M}_{\text {line, crit }}=\mathbf{2 c _ { \mathbf { s } } ^ { 2 }} / \mathbf{G} \\
\sim 16 \mathrm{M}_{\odot} \mathrm{pc}^{-1} \text { at } 10 \mathrm{~K}
\end{gathered}
$$

- if $\mathrm{M}_{\text {line }} \sim 16 \mathrm{M}_{\odot} \mathrm{pc}^{-1}, W=0.1 \mathrm{pc}$, then $\boldsymbol{\Sigma}_{\mathrm{o}}=160 \mathbf{M}_{\odot} \mathbf{p c}^{-2}$

André et al. (2010); Könyves et al. (2015)

Interpretation of the K-S scaling relation

- $\Sigma($ gas $)<10 \mathrm{M}_{\odot} \mathrm{pc}^{-2}$: gas is atomic, little but some H_{2} / dense gas
- Σ (gas) $\approx 10-120 \mathrm{M}_{\odot} \mathrm{pc}^{-2}$: gas is atomic + molecular, latter are discrete clouds of constant column density
- $\Sigma($ gas $)>120 \mathrm{M}_{\odot} \mathrm{pc}^{-2}$: gas is molecular, little atomic gas
- is dense filament fragmentation the universal process defining the onset of star formation in galaxies?

Filaments also define the Core Mass Function (IMF?)

- shape of CMF very similar to IMF ($\varepsilon \approx 0.3-0.4$)
- slope of high-mass end $\alpha \approx-1.33 \pm 0.06$ and Salpeter $=-1.35$

High-mass Star Formation with HOBYS

High-mass Star Formation and Ridges

Vela C

- What is the connection between filaments and high-mass star formation?

High-mass Star Formation and Ridges

- disorganized networks ('nests') and dominating 'ridges' show relative importance of turbulence vs. gravity
- high-mass stars only found in 'ridges' ; filaments of $A_{V}>100$

High-mass Star Formation and Ridges

$5.99 \mathrm{e}+21$	$1.19 \mathrm{e}+22$	$3.56 \mathrm{e}+22$	$1.29 \mathrm{e}+23$	$5.04 \mathrm{e}+23$

- ridges formed and fed by filament merging
- sub-filaments also surround (feed?) dominant clump in Pipe Nebula

Ridges and Filament Intersections

- massive clumps and IR clusters found at filament intersections
- mass flow into intersected regions: more clustered star formation?

Schneider et al. (2012)

Herschel $\mathrm{N}\left(\mathrm{H}_{2}\right)$ Probability Density Functions

Schneider et al. (2013; 2015); also Russeil et al. (2013), Rivera-Ingraham et al. (2015)

What the GBT can do

- high-frequency (HF) instrumentation at GBT can enable key insights into high-mass SF via wide-field observations

What the GBT can do: MUSTANG-2

- provide key high-resolution observations of ridges, clarifying their column density structure at ~9" FWHM
- combine data with those from Herschel et al. to find dust opacity, temperature, free-free contributions

What the GBT can do: KFPA

GAS (2015), in prep

What the GBT can do: KFPA

Friesen et al. (2008)

- NH_{3} rotational-vibrational emission traces dense gas, $n_{\text {crit }}\left[\mathrm{NH}_{3}(1,1)\right] \sim 10^{3-4} \mathrm{~cm}^{-3}$
- Can probe:
- ridge dynamics, role of turbulence in formation
- gas kinematics, flows from ridges to clusters, explore filament intersections
- LOS gas temperatures, explore external heating
- abundances, cf. accurate column densities

What the GBT can do: ARGUS

What the GBT can do: ARGUS

Filament fibres?

- $\mathrm{N}_{2} \mathrm{H}^{+}$rotational lines trace well denser gas:
$n_{\text {crit }}\left[\mathrm{N}_{2} \mathrm{H}^{+}(1-0)\right] \sim 10^{5} \mathrm{~cm}^{-3}$
- can probe:
- ridge dynamics,
- gas kinematics,
- abundances
- (not temperature) at $\sim 9 "$ FWHM resolution
- $\mathrm{NH}_{2} \mathrm{D}(1,1)$ can probe locations where $\mathrm{NH}_{3} / \mathrm{N}_{2} \mathrm{H}^{+}$ lines are optically thick

Summary

- Recent surveys have revealed the YSO populations and column density substructures of molecular clouds in many star formation regimes
- GBT's HF instruments will enable key insights into how filaments/ridges relate to star formation, by providing high-resolution observations of
- 3 mm cont. (MUSTANG-2): dust opacity, free-free
- NH_{3} lines (KFPA): filament/ridge kinematics, dynamics
- $\mathrm{N}_{2} \mathrm{H}^{+}(1-0), \mathrm{NH}_{2} \mathrm{D}(1,1)$ (ARGUS) lines: densest ridges
- High-mass star forming regions within 3 kpc are ripe for GBT wide-field observations

ас.9но

Thanks to:

Philippe André, Vera Könyves, Arabindo Roy, Doris Arzoumanian, Derek Ward-Thompson and the Herschel Gould Belt Survey Team;

Rachel Friesen, Jaime Pineda, and the Green Bank Ammonia Survey Team;

Shu-Ichiro Inutsuka, Ralph Pudritz, and of course...

Thank you

James Di Francesco

Senior Research Officer
Tel: 250-363-6925
james.difrancesco@nrc-cnrc.gc.ca
www.nrc-cnrc.gc.ca

