

Considerations of a Planetary Radar System for the GBT John Ford and Dennis Egan







#### Outline

- Motivation
  - Why consider this?
- Preliminary Technical Investigations
  - What to design and build?
  - What obstacles are in the way?
  - What do we know as of now?
- Conclusions







#### **Motivation**

- Why a Radar transmitter on the GBT?
  - Extra observing time and easier scheduling possible with another
     Planetary Radar Transmitter to complement Goldstone and Arecibo
  - Good sky coverage and long tracks with the GBT
    - Reaches down to -45 declination
    - Access to 85 % of the sky
  - Excellent surface and receivers give good Ae/Tsys
  - Frequency diversity with higher frequency possible than at Goldstone or Arecibo
    - Would require development of new Klystron?
    - No large efficient bistatic partner antennas?







## Antenna Specifications and Performance

| Coordinates                              | Longitude: 79d 50' 23.406" West (NAD83)<br>Latitude: 38d 25' 59.236" North (NAD83)                                                                                              |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optics                                   | Off-axis feed, Prime and Gregorian foci<br>f/D (prime) = 0.29 (referred to the 208 m<br>parent parabola)<br>f/D (Gregorian) = 1.9 (referred to the 100 m<br>effective aperture) |
| FWHM beamwidth                           | 720"/v [GHz] = 12.4' /v [GHz]                                                                                                                                                   |
| Declination limits                       | - 45° to 90°                                                                                                                                                                    |
| Elevation Limits                         | 5° to 90°                                                                                                                                                                       |
| Slew rates                               | 35° / min azimuth<br>17° / min elevation                                                                                                                                        |
| Surface RMS                              | ~ 250 μm; average accuracy of individual panels: 68 μm                                                                                                                          |
| Pointing accuracy RMS (rss of both axes) | 4" (blind) <br>2.7" (offset)                                                                                                                                                    |
| Tracking accuracy                        | ~1" over a half-hour (benign night-time conditions)                                                                                                                             |
| Field of View                            | ~ 7 beams Prime Focus<br>100s – 1000s (10' FOV) Gregorian.                                                                                                                      |





#### **GBT** Characteristics

#### High gain, good sensitivity

- 100 meter unblocked aperture
  - 88 dB gain at 30 GHz
  - 83 dB @ 17 GHz
  - 77 dB @ 8.5 GHz
- Good sensitivity at X, Ku, and Ka bands
  - Tsys of ~25K at X and Ku bands
  - Tsys of 30K at 30 GHz
- Active surface:
  - Overall surface accuracy about 240 microns RMS, individual panels
     70 microns
  - Good aperture efficiency: X, Ku ~ 70%, Ka ~65%





### GBT Aperture Efficiency (R. Maddalena, 2009)







## **Active Surface**









#### **GBT** Construction

- Offset paraboloid
  - No center blockage
  - Good access to the focus cabin
  - Self-supporting cantilevered feedarm imposes limits on weight capacity
- Large structure!







## Strawman Design Parameters

- Assume X, Ku, or Ka band
  - Transmitter assembly is about the same size and weight (~2 tons)
- Assume 500 and 1000 KW power output for comparison
- Choose modular dry cooling system
- Power supply on the rotating structure

Given the above, what would the plan be?







## Transmitter Assembly Position

- Limited to 2 tons
- Near feed to reduce waveguide losses
- Needs environmentally controlled space
- Accessible for maintenance





































# Cooling System Sized for 500 KW system, provides 1.34 MW dissipation

- 2 units
- 185 GPM each
- 62C inlet temp
- 47C outlet temp
- 85 deg ambient
- Place near transmitter for efficiency?







## **Cooling System**

Pump, controls and reservoir (2 each)













## Power supply

- Placed on Alidade platform in new room
  - Solid state power supply (no crowbar needed)
  - One wrap to go around < 90 degrees</li>
  - New 4160 V feed from substation
  - New power feed from Commercial power line



















#### Conclusions

- A 500 KW X band system is feasible
- A I MW X band system is probably feasible
- A large Ku or Ka band system is feasible, but no Klystrons exist.
   Large (MW!) 95 GHz Gyrotrons exist, however, so it is possible to build them.
- From the discussions yesterday, a high-frequency radar is probably desired by most users, to diversify and complement existing radar system capability







www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.







