Passive Single-Dish Observations of Small Bodies Amy Lovell, Agnes Scott College April 18, 2006

Fragment B

Hubble

Why small bodies??

- Thermal history
- Collisions
- Mixing

67P/ Churyumov-Gerasimenko

Deep Impact/EPOXI

Why Radio?

Long molecule life = large coma "Parent" molecules from volatiles High spectral/velocity resolution

Observational Goals

Radio spectra (and maps) can constrain:

- Production rates
- Outflow velocities
- Asymmetries
- Coma density

Pumped by solar UV amplifies or absorbs background

H2O dissociates (statistically) into OH & H OH flies in a random direction, +1.05 km/s Binned into a spectrum

Free parameters: outflow velocity, quenching r_Q Day/Night independent

Lifetime: 82000s (H₂O ~1 day) 150,000s (OH 1.7d)

19 Sep GBT r_H = 2 AU 8' 516,000km

Outflow Velocity & Gas Production

Production rate Q

-# molecules/second from observed column density

Velocities (widths) 0.5–2.5 km/s Low velocity for low-Q or distant $Q<10^{29}$ mol s⁻¹ r >1.0 km s⁻¹

Large variations near sun, large Q

Collisional Quenching Density

At high density, OH is thermalized

- -no pumping sustained
- -"ons" suppressed
- -"offs" enhanced
- -Production rates under-estimated
- This can be measured!

Gas Production variability

Extended Emission

Extent of Emission determined by

- Photo-dissociation lifetime
- Outflow velocity
- Excitation profile (collision zone)

These in turn influence gas production rate – # of molecules required to produce observed column density

"Traditional" Observations of Asteroids

Photometry General Brightness/colors

Astrometry

Lightcurves

Why thermal lightcurves?

Little rotational thermal data

Spacecraft images resolve (ground truth) RADAR adds size/spin/type data

mm & sub-mm technology (bolometers)

Asteroid Vesta HST • WFPC2 PRC95-20A • ST Scl OPO • April 19, 1995 • B. Zellner (GA Southern Univ.), NASA

Ceres video...

Continuum is good too!

mm-scale dust

Large size, larger mass Source of extended coma emissions?

Future Observations

Rotationally-resolved coma maps Simultaneous parent/daughter maps Large-particle dust continuum NEO Thermal lightcurves

One month to New Horizons Pluto!

