Multi-messenger exploration of the transient sky with LIGO and the VLA

TEXAS TECH UNIVERSITY

From here, it's possible.

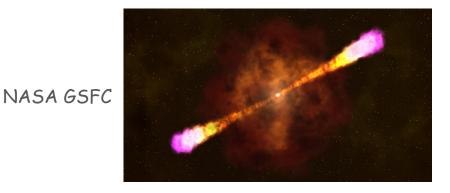
Alessandra Corsi, for the LSC

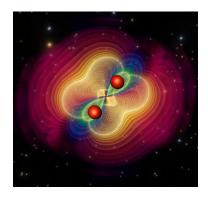
Fifteenth Synthesis Imaging Workshop I-8 June 2016

Key topics

- ◆ Time-domain astronomy, Gravitational Waves (GWs), and the start of a new era in multi-messenger astrophysics.
- ElectroMagnetic (EM) follow-up of GWs: Sources and observational facilities (or at least some of them...).
- Practical considerations for VLA follow-up.

Transient Astronomy


- ♦ A transient astronomical event is an astronomical object or phenomenon whose duration may be from seconds to days, weeks or even several years.
- ◆ These timescales are much shorter than the millions or billions of years during which galaxies and their component stars in our universe have evolved.
- When we talk about transient astronomy in connection with GWs and ground-based GW detectors, we are mostly interested in the EM counterparts of EXPLOSIVE events marking the birth of NSs or BHs.



Why Transient Astronomy & GWs?

Highly energetic astrophysical transients are promising **GW transients**.

GW emission only weakly beamed: we don't need to worry too much about source inclination.

W. Benger, LSU

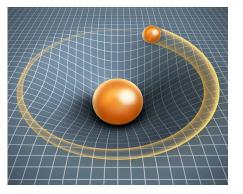
- GW detectors weakly directional: can basically monitor the whole sky! (BUT, poor localization compared to EM telescopes...)
- GWs come directly from the central engine: Not obscured or scattered by material, complement photon diagnostics of surface, outflows, CSM, and astronomical context.

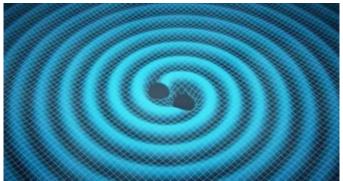
Why multi-messenger astrophysics?

Complete astrophysical picture

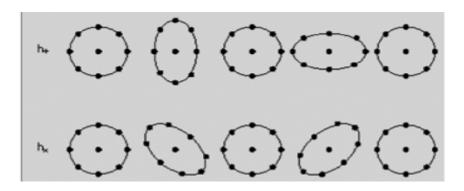
GWs

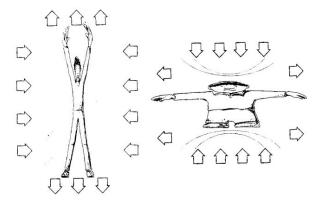
- Masses.
- Spins.
- Rates and implications on progenitor formation scenarios.
- Geometric properties of the progenitor:
 - "Position"
 - Distance
 - Inclination angle
 - ...


EM


- Enhance confidence of low-SNR GW detections.
- Nucleosynthesis.
- ♦ Ejecta properties:
 - Energetics
 - Velocity
 - Geometry
- Redshift.
- Environment properties (especially density).
- **•** ...

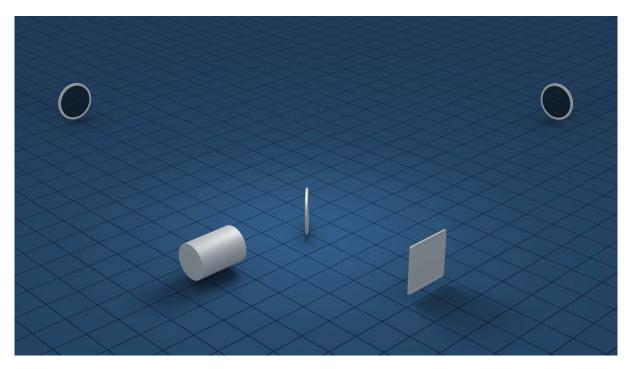
Gravitational waves


In Einstein's view of gravity, "spacetime tells matter how to move; matter tells spacetime how to curve" (J.A.Wheeler).

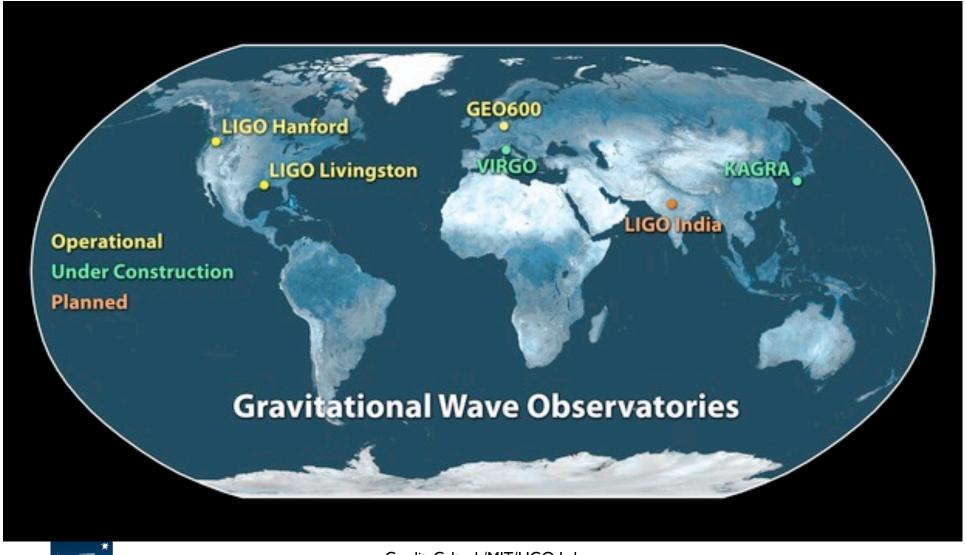


Swinburne Astronomy Productions

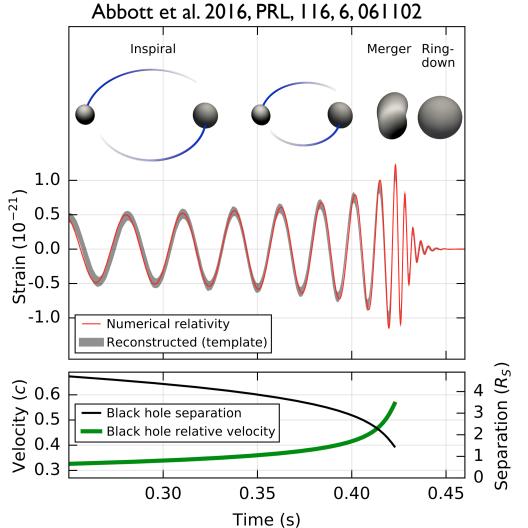
• GWs are 'ripples' in the fabric of space-time that change the distance between free falling masses. They come in two polarizations + and x.



Detecting gravitational waves


- Fire a light beam through an L-shaper detector...
- GWs cause an arm length difference by stretching one arm and compressing the other, thus changing the amount of light collected on the output photodetector.

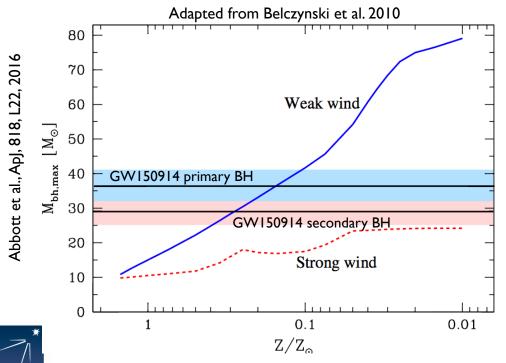
 $\Delta L/L\sim h\sim 10^{-21} \rightarrow \text{ for L=4km } \Delta L\sim 10^{-18} \text{ m!}$

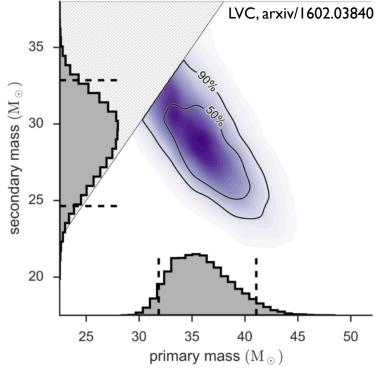

Ground-based GW detectors network

Credit: Caltech/MIT/LIGO Lab

The discovery: GWs from a BBH

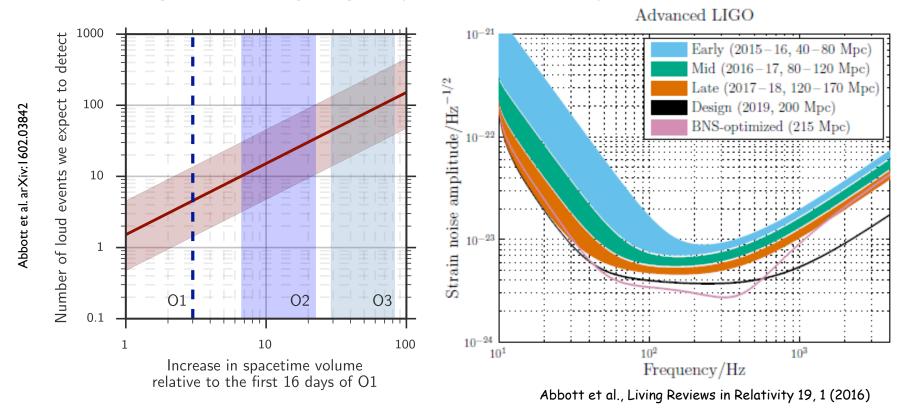
Credit: LIGO Lab.





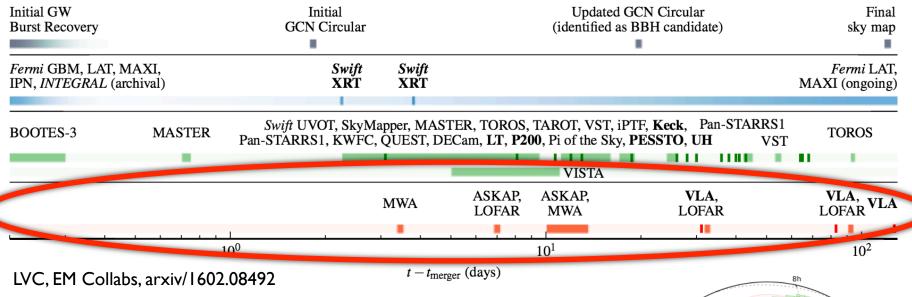
New Astrophysical Implications

♦ Unexpectedly massive (29-36 M_{\odot}) stellar-mass BH exist and merge.

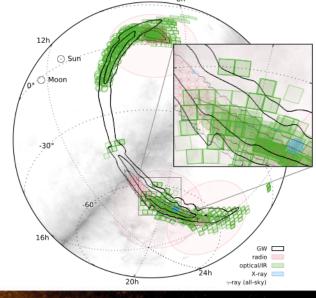

 Low-metallicity environment or formation in dense cluster required (Abbott et al. 2016).

BBH: Rates and Future prospects

♦ Local rate of BBH mergers: $2-400 \text{ yr}^{-1} \text{ Gpc}^{-3}$ (LVC, arXiv:1602.03842). Previously: $0.1-300 \text{ Gpc}^{-3} \text{ yr}^{-1}$ (Abadie et al. 2010).



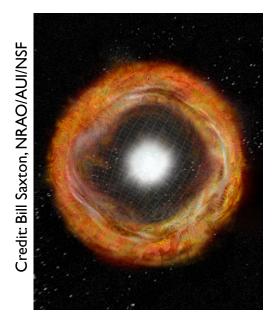
With more detections:


- Pin down the rate at which BBH merge in the Universe;
- Learn new/finer details on BBHs in the universe (e.g., mass distribution).

Panchromatic EM follow-up

- Consortium between LIGO-Virgo and 63 teams using ground and space facilities.
- ◆ Gamma-ray, X-ray, optical, infrared, and radio wavelengths.
- \blacktriangleright Localization area \sim 600 deg² (90% conf.)

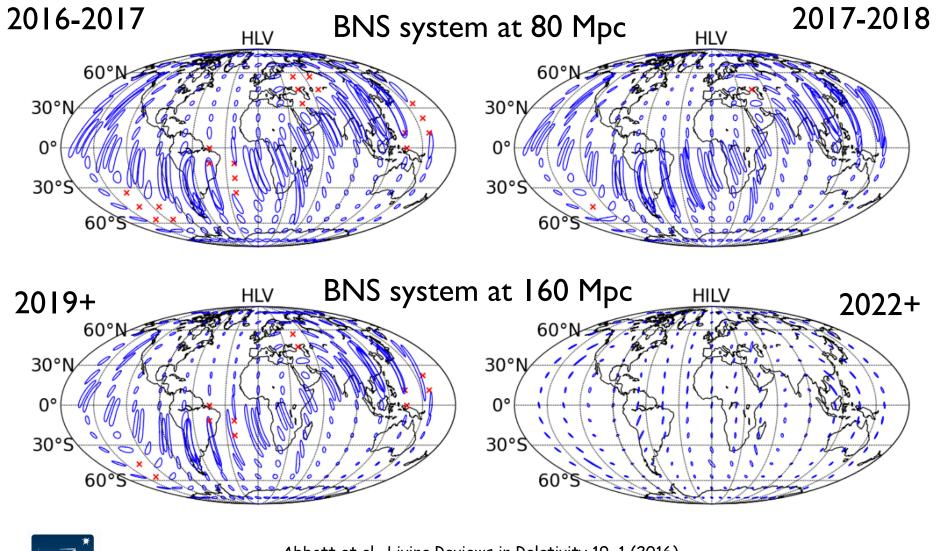
BHs are nice but NS matter...


- Binary neutron stars (NSs)
- ◆BH-NS star binaries
- ◆Individual NSs and magnetars
- Supernovae (and engine-driven SNe)

Credit: NASA

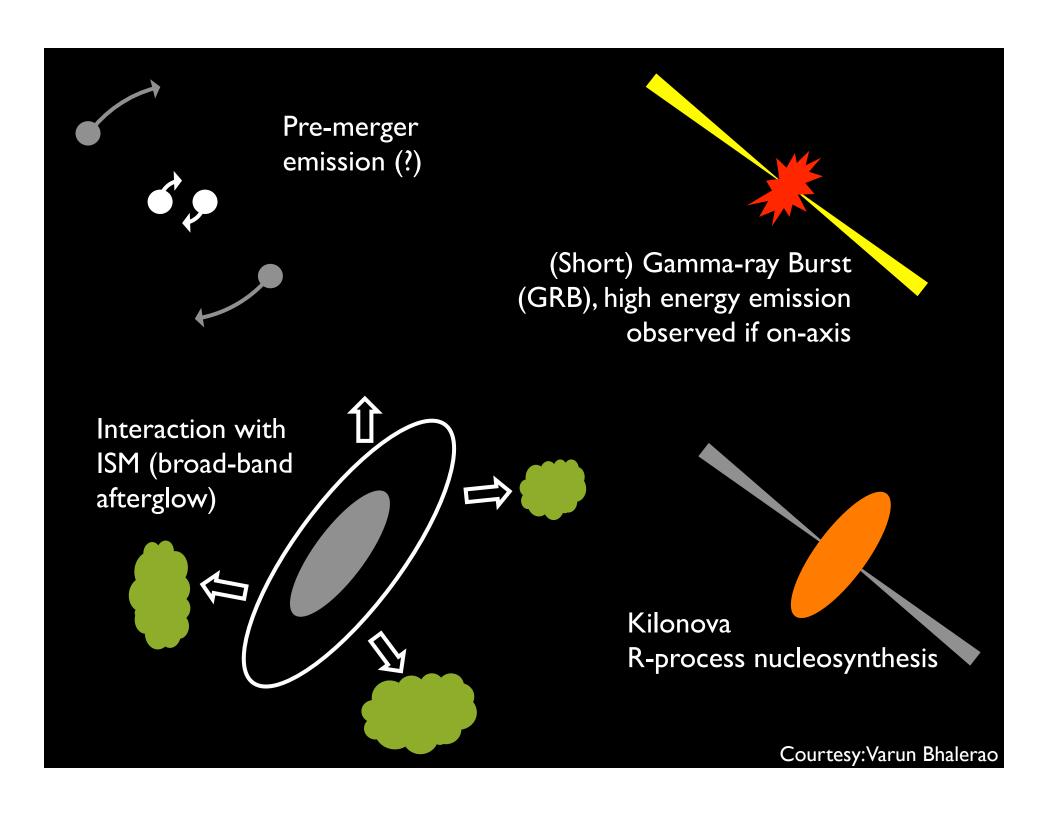
Credit: NASA/CXC/ASU/Hester et al.

Credit: NASA


Rates and localization areas

Abbott et al., Living Reviews in Relativity 19, 1 (2016)

Abbott et al., Living Reviews III Relativity 17, 1 (2016)							
Epoch			2015 – 2016	2016 – 2017	2017 – 2018	2019+	2022+ (India)
Estimated run duration			4 months	6 months	9 months	(per year)	(per year)
Burst range/Mpc LIGO		40 – 60	60 – 75	75 – 90	105	105	
Virgo			20 – 40	40 – 50	40 – 80	80	
BNS range/Mpc LIGO		40 – 80	80 – 120	120 – 170	200	200	
		Virgo	_	20 – 60	60 - 85	65 – 115	130
Estimated BNS detections		0.0005 – 4	0.006 – 20	0.04 – 100	0.2 - 200	0.4 - 400	
90% CR	% within	5 deg ²	< 1	2	> 1–2	> 3–8	> 20
		20 deg ²	< 1	14	> 10	> 8–30	> 50
median/deg ²		480	230			S	
searched area	% within	5 deg ²	6	20	//		A
		20 deg ²	16	44	HL		
median/deg ²		88	29		$\langle $		



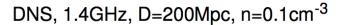
Localization areas

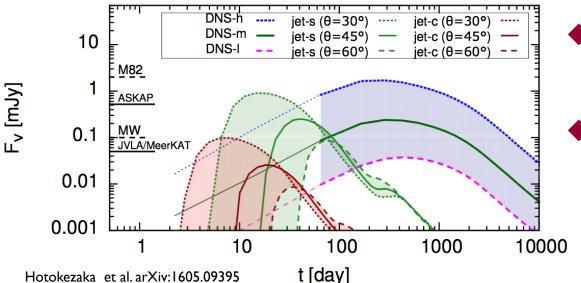
Abbott et al., Living Reviews in Relativity 19, 1 (2016)

DNS/BH-NS in radio: timescales and counterparts

◆ <100 s since merger: ?? → Models include: prompt radio pulse from magnetically-driven relativistic plasma, FRB, ...(e.g., Chu et al 2015 and refs. therein).</p>

◆ Days-weeks: Ultra-relativistic radio afterglow


- *If on-axis*, prompt high-energy counterpart and bright optical counterpart (on-axis afterglow, hrs-day).
- If moderately off-axis (\sim 2x jet opening angle), faint optical counterpart (off-axis afterglow, \sim day).
- If largely off-axis, may have faint optical/IR counterpart (kilonova, hrs-day, r≥20.5mag @ 100 Mpc depending on source parameters (e.g. Berger et al. 2013, Metzger et al. 2015).


♦ Weeks-months: Slower radio remnant

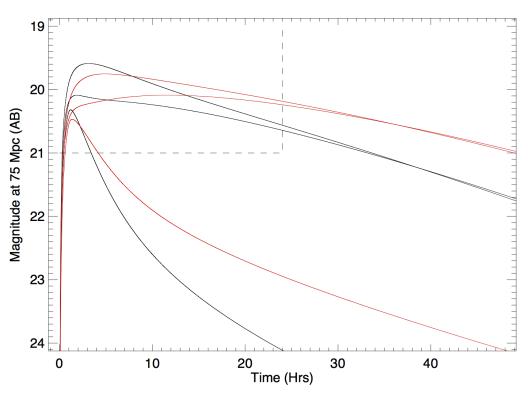
- May have faint optical/IR counterpart (kilonova, hrs-day, r≥20.5mag @ 100 Mpc depending on source parameters, e.g. Metzger et al. 2015).

Radio counterparts to DNS and BH-NS with no γ-ray trigger

- Horizontal solid bars are 7 σ
 detection limits in 1 hr.
- Radio flux densities of M82 and MW also indicated.

Model	E_K [erg]	$\langle \beta_0 \rangle$ [c]	$L_{1.4\text{GHz}}^{n=1} [\text{erg s}^{-1}\text{Hz}^{-1}]$	$L_{1.4 \rm GHz}^{n=0.1}$	$L_{1.4 \rm GHz}^{n=0.01}$
$\overline{\mathrm{DNS}_h}$	10^{51}	0.3	$4 \cdot 10^{29}$	$8 \cdot 10^{28}$	10^{28}
DNS_m	$3 \cdot 10^{50}$	0.25	$8 \cdot 10^{28}$	10^{28}	$2 \cdot 10^{27}$
DNS_l	10^{50}	0.2	10^{28}	$2\cdot 10^{27}$	$3 \cdot 10^{26}$
$\mathrm{BH} ext{-}\mathrm{NS}_h$	$5\cdot 10^{51}$	0.3	$2 \cdot 10^{30}$	$5\cdot 10^{29}$	$7 \cdot 10^{28}$
$\mathrm{BH} ext{-}\mathrm{NS}_m$	$2\cdot 10^{51}$	0.25	$5 \cdot 10^{29}$	$8 \cdot 10^{28}$	10^{28}
$\mathrm{BH} ext{-}\mathrm{NS}_l$	$5\cdot 10^{50}$	0.2	$7\cdot 10^{28}$	$9 \cdot 10^{27}$	10^{27}
$strong ext{-}jet$	10^{49}	~ 1	$3 \cdot 10^{28}$	10^{28}	$2 \cdot 10^{27}$
canonical-jet	10^{48}	~ 1	$4 \cdot 10^{27}$	10^{27}	$2\cdot 10^{26}$

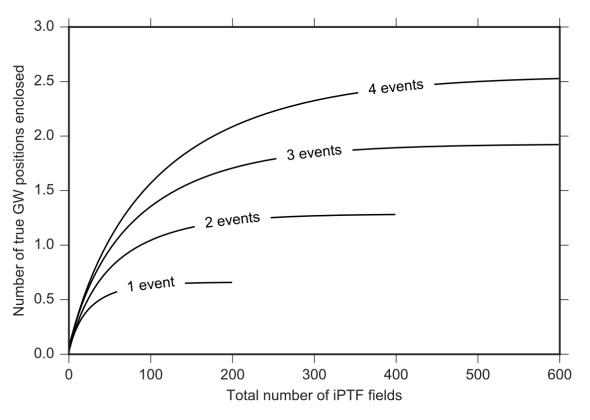
VLA Observing strategy (i): map GW error area


Model	$n (\text{cm}^{-3})$	JVLA (1.4 GHz)
$\overline{\mathrm{DNS}_h}$	0.1	86 (93)
DNS_m	0.1	21 (31)
DNS_l	0.1	6 (4)
$\mathrm{BH} ext{-}\mathrm{NS}_h$	0.1	98 (97)
BH - NS_m	0.1	44 (44)
$\mathrm{BH} ext{-}\mathrm{NS}_l$	0.1	4 (6)
strong-jet	0.1	36 (41)
canonical-jet	0.1	8 (8)

Hotokezaka et al. arXiv:1605.09395

- Radio-GW detection likelihood (%) for each radio telescope and a network of 3 GW detectors (or 5).
 2x smaller if we account for Northern/Southern hemisphere.
- At least a 7σ detection during at least I of 5 observation epochs (10 d, 30 d, 100 d, 300 d, or 1000 d after GW detection).
- ◆ A total observation time of 30 hr is assumed in each observation epoch → 150 hr per GW trigger for 5 epochs.

VLA Obs. strategy (ii): coordinate with optical telescopes



Kasliwal et al. arXiv:1602.08764

- Minimizes required VLA time for discovery, enables time spent on multi-band radio follow-up to constrain radio spectral properties.
- Detectability in optical is key (provides arcsec localization).
- g-band (black) and r-band (red) kilonova model light curves for different values of opacities and remnant mass (Metzger 2015). iPTF limiting r~21mag in 60 s.

VLA Obs. strategy (ii): iPTF example

- Average # of times true GW position is enclosed as a function of # of imaged iPTF fields (7.1 deg² each).
- Two 60s images of 150 iPTF fields can be obtained in 1 night.
- ◆ 2 GW events followups needed to have at least I in the area.

Kasliwal et al. arXiv:1602.08764

Background and false positives

- ◆ Optical/IR false positives @ 24 mag: ~ 60 deg⁻² (Nissanke et al. 2013). Hard problem but tractable via machine learning techniques (e.g., Kasliwal et al. 2016).
- ◆ Extragalactic radio transient false positives: <~I deg-2 for f>0.1mJy @ I.4GHz on weeks-months timescales (Mooley et al. 2013, 2016; Hotokezaka et al. 2016).
- ◆ AGN (i.e., persistent extragalactic radio sources) inside the GW localization volume or outside the GW localization volume but behind the candidate host galaxy: ~10 x(Area/100 deg²) @ 0.1mJy assuming <1% varies more than 30% (Hotokezaka et al. 2016).
- CAVEAT: population of radio variable sources depends on sensitivity and still (mostly) unexplored at flux densities of GW radio counterparts. Combining optical and multi-band/multi-epoch radio observations will be most effective.



TEXAS TECH UNIVERSITY[™]

TEXAS TECH UNIVERSITY

Graduate Study in Physics and Astrophysics Research

TO APPLY AND FOR MORE INFO: www.phys.ttu.edu/grad study.html www.phys.ttu.edu/new research.html

- * Competitive FINANCIAL SUPPORT offered.
- Bucy Scholarships available.
- * NO GRE required for foreign students

Extreme and Explosive Astrophysics

- Rapid responses to study supernovae and other transients.
- Reverberation mapping of AGNs to measure black hole masses.
- Observational studies of dynamics of dense star clusters.
- Accretion onto black holes and neutron stars, jets, GRBs.

Stellar Populations in Nearby Galaxies

- Searches for low surface brightness dwarf galaxies.
- Resolving halo substructure (stellar streams, shells and plumes) to understand the hierarchical formation of galaxies.
- X-ray binary populations of nearby galaxies.
- Chandra Galactic Bulge Survey, Milky Way close binary populations.

Gravitational-Wave Physics and Astronomy

- Gravitational waves from GRBs, pulsars, and magnetars using advanced LIGO.
- Radio, optical, and X-ray follow-up of gravitational wave events.
- Theoretical studies of neutron stars and black holes.

Instrumentation / Big Science Projects

- FLOYDS a pair of spectrographs for the Faulkes Telescopes.
- We are contributing to several big science projects: CTA, iPTF, LIGO, LSST, WINGS (WFIRST IR nearby Galaxy Survey).

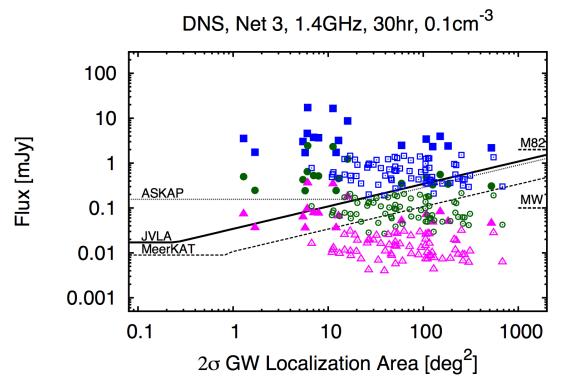
A. Corsi

B. Owen

D. Sand

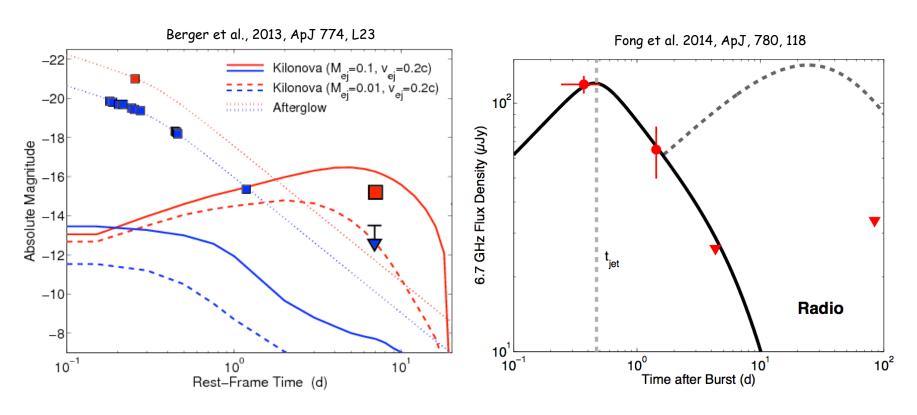
LIGO Scientific

WHERE? Lubbock, (West) Texas - USA


		ı		
observed by	LIGO L1, H1	duration from 30 Hz	~ 200 ms	
source type	black hole (BH) binary	# cycles from 30 Hz	~10	
date	14 Sept 2015	peak GW strain	1 x 10 ⁻²¹	
time	09:50:45 UTC	peak displacement of	±0.002 fm	
likely distance	0.75 to 1.9 Gly 230 to 570 Mpc	interferometers arms frequency/wavelength	±0.002 fm 150 Hz, 2000 km	
redshift	0.054 to 0.136	at peak GW strain		
signal-to-noise ratio	24	peak speed of BHs peak GW luminosity	~ 0.6 c 3.6 x 10 ⁵⁶ erg s ⁻¹	
false alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 M⊙	
false alarm rate	< 1 in 200,000 yr	remnant ringdown fre	g. ~ 250 Hz	
Source Mas	ses M⊙	remnant damping tim	•	
total mass primary BH secondary BH remnant BH	remna s 60 to 70 H 32 to 41 cons genera	remnant damping tin remnant size, area consistent with general relativity? graviton mass bound	180 km, 3.5 x 10 ⁵ km ² passes all tests performed < 1.2 x 10 ⁻²² eV	
mass ratio	0.6 to 1 < 0.7	coalescence rate of binary black holes	2 to 400 Gpc ⁻³ yr ⁻¹	
secondary BH spin	< 0.9 0.57 to 0.72	online trigger latency # offline analysis pipeli	~ 3 min nes 5	
signal arrival time delay	arrived in L1 7 ms before H1	CPU hours consumed	~ 50 million (=20,000 PCs run for 100 days)	
likely sky position likely orientation resolved to	Southern Hemisphere face-on/off ~600 sq. deg.	papers on Feb 11, 2016 # researchers	A A A A A	

Transients	$R \left[\text{Gpc}^{-3} \text{yr}^{-1} \right]$	$L_{1.4\text{GHz}} [\text{erg s}^{-1}\text{Hz}^{-1}]$	T [yr]
Type II radio SN	$3 \cdot 10^{4}$	$10^{27.5}$	10
Type $Ib/c SN$	5000	10^{27}	0.3
LLGRB	500	$5 \cdot 10^{27}$	0.1
Orphan LGRB	15	$2 \cdot 10^{29}$	3
TDE (strong jets)	1	10^{31}	3
TDE	200	10^{28}	0.5

VLA Observing strategy (i): radio mapping of GW area


Hotokezaka et al. arXiv:1605.09395

- Example for long-lasting radio remnants.
- Filled squares, circles, triangles: peak flux of high, median, low ejecta model within 200 Mpc.
 Open symbols are for events beyond 200 Mpc.
- Lines show 7σ sensitivity reached by each instr. to cover the 2σ GW localization area in 30hr.
- ◆ VLA: 0.25deg FOV radius @ 1.4GHz.

Optical/radio counterparts to DNS/BH-NS (I)

Short-hard GRBI30603B at ~ 2 Gpc

 $M_r=-13 \rightarrow r=22 \text{ mag} @ 100 \text{ Mpc}$

100 uJy @ 2 Gpc → 40 mJy @ 100 Mpc

