NGVLA Science Working Group:

Participants

Geoffrey C. Bower¹, Paul Demorest², James Braatz³, Avery Broderick⁴, Sarah Burke-Spolaor², Bryan Butler², Tzu-Ching Chang⁵, Laura Chomiuk⁶, Jim Cordes⁷, Jeremy Darling⁸, Jean Eilek⁹, Gregg Hallinan¹⁰, Nissim Kanekar¹¹, Michael Kramer¹², Dan Marrone¹³, Walter Max-Moerbeck², Brian Metzger¹⁴, Miguel Morales¹⁵, Steve Myers², Rachel Osten¹⁶, Frazer Owen², Michael Rupen¹⁷, Andrew Siemion¹⁸

Time Domain

Advanced LIGO and GW Detection

Radio Counterparts of LIGO Gravitational Wave Sources

Metzger & Berger 2012

Jetted Stellar Tidal Disruption Events

Fundamental Physics

A Pulsar in Orbit Around a BH

Kramer et al

Using Pulsars to Measure Spacetime Around Sgr A*

Liu et al 2012

Galactic Center Radio Pulsars

Revised GC PSR Sensitivity

Macquart & Kanekar 2014

Fundamental Constant Evolution

- Many molecular transitions sensitive to changes in Few systematics if all lines from single molecule.
- Best constraints on changes in μ !
 - $[\Delta \mu / \mu] < few \times 10^{-7}$ (NH₃, CH₃OH: Effelsberg, GBT, VLA)
- - $10 \times$ VLA: $[\Delta \mu / \mu] \sim$ few $\times 10^{-10}$ from $z \sim 2$.

Plasma Physics

Revealing the Plasma Physics of Star-Planet Interactions

Earth-Sun interaction is complex, composed of radiation, particles and magnetic field interactions

artist's conception of evaporating exoplanet atmosphere

- Cool stellar mass loss characterized by an ionized stellar wind → favors higher radio frequencies for detection
- Star-exoplanet interactions: evaporation of atmosphere from close-in planetary companion
- Particle flux interaction with exoplanet magnetic field can affect planetary dynamo
- NGVLA can provide the most sensitive direct detection of the stellar wind

Cosmology

The H₂O Megamaser in UGC 3789

Summary of Results for Megamaser Science

- One-step, geometric measurement that provides a critical complement to standard candles.
- Megamasers determine $H_0 = 70.4 \pm 3.6 \text{ km s}^{-1} \text{ Mpc}^{-1}$.
- Megamasers have determined *gold standard* masses of SMBH in ~20 galaxies.
- Megamasers provide the only means of direct imaging gas in AGN on sub-pc scales.

Goals and Requirements for a Next Gen Radio Telescope for Megamaser Science and Astrometry

- H₀ to ~1%
- BH masses in >> 100 galaxies.
- ~20% of its collecting area in long baselines (~ 5000 km).
- UV coverage requirements are modest. The long baselines could be achieved with ~ 5 100-m class apertures.
- Frequency coverage for the long baselines must include up to 22 GHz to get the H₂O line.

Intensity Mapping the Cosmic Web

Even NG VLA Is Limited in the Galaxy Population it Can See

Arp LLU at Z=D Line sensitivity (300 km/s, 12hrs) SMA 10 [OIII] [CII] [01] [NII] 1 Flux Density (mJy) PdBI 0.1 **EVLA** CO ALMA 0.01 North American Arr HCN HCO CSI 0.001

100

Frequency (GHz)

1000

10

0.0001

Detect the Integrated Luminosity Function with the 3D Power Spectrum

Same approach as taken for microwave background and HI EoR

CO 1-0 Power Spectrum at 2.3 < z < 3.3

- Wide field of view
- Dense (u,v) coverage
- Broad frequency coverage
- Coarse frequency resolution

Keating et al (2015)

Real-Time Cosmology

All observables are functions of time:

 $\dot{z} = H_o(1+z)-H(z)$ $\dot{D}_{L}/D_{L} = H_o + \dot{z} (1+z)^{-1}$ $\dot{D}_A/D_A = H_o - \dot{z} (1+z)^{-1}$ $\dot{F}/F = -2 \dot{D}_{L}/D_{L}$ CMB (time reveals 3D structure)

Order of magnitude: $H_o = 7.4 \times 10^{-11} \text{ yr}^{-1}$ $H_o = 15 \ \mu \text{arcsec yr}^{\frac{2}{4}1}$

Extragalactic Parallax

Growth of Structure \rightarrow BAO

- ICRF sources show large intrinsic PM.
- Best-fit dipole shows significant convergence at **Galactic Center** due to Solar acceleration (inducing a secular aberration drift).
- μ = 5 µarcsec yr ⁻¹
- a = 0.7 cm s⁻¹ yr ⁻¹

Proper Motion: Now and Future

	Objects	PM_object	PM_global
VLBI now	500	10s of μ arcsec yr ⁻¹	5 µarcsec yr -1
NGVLA	104	10s of μ arcsec yr ⁻¹	0.1 µarcsec yr ⁻¹
GAIA	10 ⁶	150 µarcsec yr -1	1 µarcsec yr -1

$H_{o} = 7.4 \text{ x } 10^{-11} \text{ yr}^{-1} = 15 \text{ µarcsec yr}^{-1}$

Individual parallax distances: to ~8 Mpc for NGVLA

Isotropy of expansion: 7% of H_0 currently, 0.1% for NGVLA

BAO: At
$$z = 0.5$$
, $\theta_{BAO} = 4.5^{\circ}$ ($\ell \sim 40$)
 $\rightarrow d\theta_{BAO}/dt_o = -H_o \theta_{BAO} = -1.2 \mu arcsec yr^{-1}$

Gravitational Waves

Key Science

- Transients
 - Explosive transients including EM GW sources
- Fundamental Physics
 - Pulsar orbiting Sgr A*
 - Plasma Physics
- Cosmology
 - Megamaser astrometry
 - Real-time cosmology

Technical Requirements

Technical Requirement	Science Case	
Long Baselines	Megamasers, astrometry, resolved galactic transients	
Compact Configuration	Plasma physics, intensity mapping, GC pulsars, megamasers, fundamental constants	
Wide Field of View/Survey Speed	Intensity mapping, EM GW sources	
High Frequencies (> 50 GHz)	Fundamental constants, intensity mapping, plasma physics, transients	
High Time Resolution (imaging, beamforming)	GC Pulsars	
Real time processing	Transients	