



# Next Generation Very Large Array Memo No. 8 Science Working Group 3 Galaxy Assembly through Cosmic Time

Caitlin M. Casey<sup>1</sup>, Jacqueline A. Hodge<sup>2,3</sup>, Mark Lacy<sup>2</sup>, Christopher A. Hales<sup>4</sup>, Amy Barger<sup>5</sup>, Desika Narayanan<sup>6</sup>, Chris Carilli<sup>4,18</sup>, Katherine Alatalo<sup>7</sup>, Elisabete da Cunha<sup>8</sup>, Bjorn Emonts<sup>9</sup>, Rob Ivison<sup>10,11</sup> Amy Kimball<sup>12</sup>, Kotaro Kohno<sup>13</sup>, Eric Murphy<sup>14</sup>, Dominik Riechers<sup>15</sup>, Mark Sargent<sup>16</sup>, Fabian Walter<sup>17</sup>

Caitlin Casey
Assistant Professor
UT Austin

next generation VLA workshop AAS 227 Kissimmee, FL 4 January 2016





starlight

dust

gas

#### Our link to the Cosmic Web.





Image credit: simulation by B. Oppenheimer, Leiden University

IGM 
$$\longleftrightarrow$$
 CGM  $\longleftrightarrow$  HI Gas  $\longleftrightarrow$  H<sub>2</sub> Gas  $\longleftrightarrow$  Star-Forming Clouds



Cold gas fuels star formation, but cold gas content in high-z galaxies much less understood than star-formation. Yet cold gas is essential to constraining physical mechanisms of early Universe star formation!





Carilli & Walter (2013)

AAS227 —NGVLA high-z WG — 04 January 2016



(continuum subtracted composite DSFG spectrum from ALMA, 22 galaxies; Spilker et al. 2014)

high-J CO 
$$\xrightarrow{C_O}$$
 CO(1-0)  $\xrightarrow{Q_{C_O}}$  H<sub>2</sub> gas mass  $\xrightarrow{Q_{C_O/(R_{Q_{I_O}})}}$ 

AAS227 —NGVLA high-z WG — 04 January 2016

Need low-J CO due to variation in CO excitation ladder: diverse SLEDs at high-z!



Casey, Narayanan & Cooray (2014)

Need low-J CO due to variation in CO excitation ladder: diverse SLEDs at high-z!

Factor of ~3-8 variation in  $I_{\rm CO(3-2)}/I_{\rm CO(1-0)}$ translates to same uncertainty in  $M_{
m H_2}$ (even without ~5x uncertainty in  $\alpha_{\rm CO}$  )



Casey, Narayanan & Cooray (2014)



ALMA Bands miss low-J CO at high-z.

(WG3 White Paper: Casey et al. 2015b)

AAS227 —NGVLA high-z WG — 04 January 2016



ALMA Bands miss low-J CO at high-z.

(WG3 White Paper: Casey et al. 2015b)

AAS227 —NGVLA high-z WG — 04 January 2016

Simulations perspective: (Narayanan Powderday RT code; Narayanan et al. 2015)



**CO(1-0)** 

CO(3-2)

### Dust continuum proxy for gas?

Based on fixed dustto-gas ratio; less uncertainty than CO excitation and conversion factor.

Is there any underlying bias?

Lacks dynamical constraints.



Scoville et al. (2014)

### Dust continuum proxy for gas?

Based on fixed dustto-gas ratio; less uncertainty than CO excitation and conversion factor.

Is there any underlying bias?

Lacks dynamical constraints.



Scoville et al. (2014)

# Surveying gas in the early-Universe: The need for a next generation VLA



#### Single source follow-up to population work





Casey, Narayanan & Cooray (2014)

→ 1000s of galaxies 10s of galaxies

Sensitivity Improvements

Ultra-wide Bandwidth

AAS227 —NGVLA high-z WG — 04 January 2016



AAS227 —NGVLA high-z WG — 04 January 2016



Casey et al. (2015b)



## Detectable with current JVLA

e.g. GN20, a single source at z=4.05 in CO(1-0) to depth of  $L'_{\rm CO}\approx 10^{10}\,L_{\odot}$ , with 8GHz bandwidth gives 3.2 < z < 5.0

#### **Detectable with ngVLA**

~50-100 sources per pointing from 2 < z < 8 in CO(1-0) to depth of  $L'_{\rm CO} \approx 10^9 \, L_{\odot}$ , with 3:1 bandwidth ratio. In addition, ~1 z>6 source in CO(2-1) & CO(1-0)

#### ngVLA mosaic: a CO(1-0) molecular gas deep field

mock 10-30GHz observation, 3:1 RF bandwidth, 10uJy RMS per pointing



#### What about ALMA deep fields?

Molecular gas deep fields pursued by PdBI, ALMA (F. Walter, R. Decarli, et al), only producing a **handful** of sources in high-J transitions. Over narrow FOV, normal galaxies need **low-J CO, direct tracer to H<sub>2</sub> gas**.

AAS227 —NGVLA high-z WG — 04 January 2016

# Importance of Probing dynamics of galaxies

role of merging & stochasticity?
measurements of molecular outflow rates?
constrain CO-to-H2 conversion via direct detection of
40-100pc clouds at z~4?

Surface Brightness Sensitivity

current VLA CO(1-0) at z~4, 120 hours



Hodge et al. (2012)





AAS227 —NGVLA high-z WG — 04 January 2016

#### Tracing gas to the outskirts

Beginning to make very crude measurements of molecular gas potentials extending well beyond boundary of z~2 galaxies: can be routine for ngVLA if there is dense core of compact, short-baseline elements and 12m antennae.





A ~50kpc extended diffuse CO(1-0) halo: Emonts et al. (2014), also see Ivison et al. (2011)

AA<del>S227 —NGVLA high-z WG — 04 Jan</del>uary 2016

#### Summary: High-z Gas Detection with the ngVLA

#### Objectives:

- 1. Detect 1000's of  $z\sim2$  to  $z\sim10$  in CO(1-0), inferring evolution of star-forming gas content in the Universe.
- 2. Probe internal dynamics of high-redshift galaxies efficiently: resolve ~40-100pc molecular clouds, outflows, and constrain stochasticity. How important are mergers for building galaxies?

#### Technical Goals:

- Sensitivity improvements crucial: from 'extreme' to 'normal' galaxies
- Surface brightness sensitivity for resolving diffuse gas, linking galaxies to their cosmic web
- Wide bandwidth enabling very large-volume CO surveys in the early Universe, blind CO confirmation
- **Smaller antennae** (12m) enabling very short baselines and large FOV.

Supplemental Material

Table 2 SMGs with CO(1-0) data

|              |      |              |                    |                      | -                              |                    |                |                           |                        |                                       |
|--------------|------|--------------|--------------------|----------------------|--------------------------------|--------------------|----------------|---------------------------|------------------------|---------------------------------------|
| SMG          | Ref. | $\mathbf{z}$ | $S_{\nu}(850 \mu)$ | $SNR_{850\mu m}^{a}$ | $\frac{\Gamma_0}{\Gamma_{RJ}}$ | $I_{CO}$           | $SNR_{CO}^{a}$ | $M_{ m ISM}{}^{ m b}$     | $L_{850}$              | $L_{850} \ / \ { m M}_{ISM}{}^{ m b}$ |
|              |      |              | mJy                |                      | - RJ                           | $\rm Jy~km~s^{-1}$ |                | $10^{11}~{\rm M}_{\odot}$ | $10^{31} \mathrm{cgs}$ | $10^{20}~{ m cgs/M_{\odot}}$          |
|              |      |              |                    |                      |                                |                    |                |                           |                        |                                       |
| HXMM01       | 1    | 2.31         | 27.0               | 9.0                  | 2.6                            | 1.73               | 5.6            | $20.1 \pm 3.6$            | 10.5                   | $0.5 \pm 0.2$                         |
| SPT-S053816  | 2    | 2.79         | 125.0              | 17.9                 | 3.2                            | 1.20               | 6.0            | $19.3 \pm 3.2$            | 47.9                   | $2.5 \pm 0.6$                         |
| HATLASJ08493 | 3    | 2.41         | 19.0               | 9.5                  | 2.7                            | 0.56               | 8.0            | $7.0 \pm 0.9$             | 7.1                    | $1.0 \pm 0.2$                         |
| H-ATLASJ0903 | 4    | 2.31         | 54.7               | 17.6                 | 2.6                            | 1.00               | 7.7            | $11.6 \pm 1.5$            | 21.2                   | $1.8 \pm 0.3$                         |
| H-ATLASJ0913 | 4    | 2.63         | 36.7               | 9.4                  | 3.0                            | 0.76               | 6.3            | $11.1 \pm 1.7$            | 14.6                   | $1.3 \pm 0.3$                         |
| H-ATLASJ0918 | 4    | 2.58         | 18.8               | 11.8                 | 2.9                            | 1.04               | 4.0            | $14.7 \pm 3.7$            | 7.4                    | $0.5 \pm 0.2$                         |
| HLSW-01      | 5    | 2.96         | 52.8               | 105.6                | 3.5                            | 1.14               | 10.4           | $20.2 \pm 2.0$            | 21.4                   | $1.1 \pm 0.1$                         |
| H-ATLASJ1132 | 4    | 2.58         | 106.0              | 5.9                  | 2.9                            | 0.66               | 3.5            | $9.3 \pm 2.7$             | 4.9                    | $0.5 \pm 0.2$                         |
| H-ATLASJ1158 | 4    | 2.19         | 107.0              | 5.9                  | 2.5                            | 0.74               | 6.2            | $7.9 \pm 1.3$             | 4.9                    | $0.6 \pm 0.2$                         |
| H-ATLASJ1336 | 4    | 2.20         | 36.8               | 12.7                 | 2.5                            | 0.93               | 7.8            | $10.0 \pm 1.3$            | 14.3                   | $1.4 \pm 0.3$                         |
| H-ATLASJ1344 | 4    | 2.30         | 73.1               | 30.5                 | 2.6                            | 2.74               | 7.0            | $31.7 \pm 4.5$            | 28.4                   | $0.9 \pm 0.2$                         |
| H-ATLASJ1413 | 4    | 2.48         | 33.3               | 12.8                 | 2.8                            | 1.47               | 8.6            | $19.4 \pm 2.2$            | 13.1                   | $0.7 \pm 0.1$                         |
| SMMJ2135-010 | 6    | 2.33         | 106.0              | 8.8                  | 2.6                            | 2.25               | 9.8            | $26.5 \pm 2.7$            | 39.4                   | $1.5 \pm 0.3$                         |
| SPT-S233227  | 2    | 2.73         | 150.0              | 13.6                 | 3.1                            | 1.70               | 6.8            | $26.4 \pm 3.9$            | 57.3                   | $2.2 \pm 0.5$                         |
| SMMJ123549.4 | 7    | 2.20         | 8.3                | 3.3                  | 2.5                            | 0.32               | 8.0            | $3.4 \pm 0.4$             | 2.8                    | $0.8 \pm 0.3$                         |
| SMMJ123707.2 | 7    | 2.49         | 10.7               | 4.0                  | 2.8                            | 0.91               | 7.0            | $12.1 \pm 1.7$            | 3.7                    | $0.3 \pm 0.1$                         |
| SMMJ163650.4 | 7    | 2.38         | 8.2                | 4.8                  | 2.7                            | 0.34               | 8.5            | $4.2 \pm 0.5$             | 2.8                    | $0.7 \pm 0.2$                         |
| SMMJ163658.1 | 7    | 2.45         | 10.7               | 5.3                  | 2.8                            | 0.37               | 5.3            | $4.8 \pm 0.9$             | 3.7                    | $0.8 \pm 0.3$                         |
| EROJ164502+4 | 9    | 1.44         | 4.9                | 6.6                  | 1.8                            | 0.60               | 6.0            | $3.0 \pm 0.5$             | 1.5                    | $0.5 \pm 0.2$                         |
| SMMJ02399-01 | 10   | 2.81         | 23.0               | 12.1                 | 3.3                            | 0.60               | 5.0            | $9.8 \pm 2.0$             | 8.1                    | $0.8 \pm 0.2$                         |
| SMMJ04135+10 | 10   | 2.85         | 25.0               | 8.9                  | 3.3                            | 0.64               | 7.9            | $10.7 \pm 1.4$            | 8.8                    | $0.8 \pm 0.2$                         |
| SMMJ04431+02 | 11   | 2.51         | 7.2                | 4.8                  | 2.8                            | 0.26               | 4.3            | $3.5 \pm 0.8$             | 2.5                    | $0.7 \pm 0.3$                         |
| SMMJ14009+02 | 10   | 2.93         | 15.6               | 8.2                  | 3.5                            | 0.31               | 15.5           | $5.4 \pm 0.3$             | 5.5                    | $1.0 \pm 0.2$                         |
| SMMJ14011+02 | 10   | 2.57         | 12.3               | 7.2                  | 2.9                            | 0.40               | 8.0            | $5.6 \pm 0.7$             | 4.3                    | $0.8 \pm 0.2$                         |
| SMMJ163555.2 | 10   | 2.52         | 12.5               | 15.6                 | 2.9                            | 0.22               | 5.5            | $3.0 \pm 0.5$             | 4.3                    | $1.4 \pm 0.4$                         |
| SMMJ163554.2 | 12   | 2.52         | 15.9               | 22.7                 | 2.9                            | 0.40               | 10.0           | $5.4 \pm 0.5$             | 5.5                    | $1.0\pm 0.1$                          |
| SMMJ163550.9 | 12   | 2.52         | 8.4                | 10.5                 | 2.9                            | 0.30               | 3.3            | $4.1 \pm 1.2$             | 2.9                    | $0.7 \pm 0.3$                         |
| HATLASJ08493 | 12   | 2.41         | 25.0               | 12.5                 | 2.7                            | 0.49               | 8.2            | $6.1\pm 0.8$              | 9.4                    | $1.5\pm 0.3$                          |
|              |      |              |                    |                      |                                |                    |                | averagec                  | :                      | $\textbf{1.01} \pm \textbf{0.52}$     |

Note. — Submm fluxes and CO(1-0) measurements from references given in the second column: 1:(Fu et al. 2013), 2:(Aravena et al. 2013), 3:(Ivison et al. 2013), 4:(Harris et al. 2012), 5:(Riechers et al. 2011a), 6:(Lestrade et al. 2011), 7:(Ivison et al. 2011), 8:(Riechers et al. 2011b), 9:(Greve et al. 2003), 10:(Thomson et al. 2012), 11:(Harris et al. 2010), 12:(Ivison et al. 2013),(Bussmann et al. 2013)

Scoville et al. (2014)







At sufficiently high-redshift, the NG VLA bands benefit from the very-negative K-correction on the cold dust Raleigh-Jeans tail (not just the higher-frequency submm bands!).

As a consequence, NG VLA will provide important constraints on high-z dust continuum as well as cold gas.



At sufficiently high-redshift, the NG VLA bands benefit from the very-negative K-correction on the cold dust Raleigh-Jeans tail (not just the higher-frequency submm bands!).

As a consequence, NG VLA will provide important constraints on high-z dust continuum as well as cold gas.

# High-z Science Goals: Dynamics EXAMPLES

# **UNRESOLVED**

Neri et al. (2003), Greve et al. (2005), Tacconi et al. (2006), Casey et al. (2011), Bothwell et al. (2012)

#### MARGINALLY RESOLVED



Tacconi et al. (2008), Daddi et al. (2010), Tacconi et al. (2010), Bothwell et al. (2010), Engel et al. (2010)

## KINEMATICS + MORPHOLOGY needed to constrain M<sub>dyn</sub> (do they sit at center of DM halo?)

AAS227 —NGVLA high-z WG — 04 January 2016



Image credit: NOAO/AURA/NSF

A Next Generation VLA is needed to reveal the morphology and dynamics of high-z

galaxies

Image credit: NASA/STScI/ACS
ScienceTeam

Disk?

#### Why not use the VLA?

It takes too long!

Significantly increased sensitivity is crucial if we are to do this on more than a handful of the very brightest objects



#### Why not use ALMA?

ALMA doesn't probe the crucial low-J transitions at high-z, which can have a completely different structure

A Next Generation VLA is necessary to directly probe the dynamics of the bulk of the gas in high-z galaxies





Total molecular gas masses and the CO-to-H2 conversion factor  $(X_{CO})$ :

We currently have to extrapolate from what we know about local galaxies.

A Next Generation VLA is required to directly measure the conversion factor, and thus total gas masses, at high-z

Bolatto, Wolfire & Leroy 2013 ARA&A AAS227 —NGVLA high-z WG — 04 January 2016

# AGN and supermassive black holes

- Two key AGN questions addressed by NG-VLA:
  - Measure BH masses from gas disk dynamics and evolution of the M-sigma relation.
  - Molecular outflows, feedback, and the origin of radio emission from radio-quiet AGN.

What drives co-evolution of BHs and their host galaxies?

## BH masses and M-σ

Radius of influence for 10<sup>9</sup> M<sub>☉</sub> BH ~30mas at z~1, resolvable with NG-VLA (SB sensitivity may limit NG-VLA measurements to z~0.1 in practice)

At high-z, M-σ applied to quasars with C+, but detailed dynamics needed to separate sigma from rotation, outflows and merger activity (sub kpc scales).

ALMA: high-J CO or C+ only.



Wang et al. 2013, ApJ, 773, 44
(ALMA)
AAS227 —NGVLA high-z WG — 04 January 2016



# Outflows, feedback and radio emission from radio-quiet AGN

Dynamics of molecular outflows – measure effect of AGN on ISM.

NG-VLA at ~100GHz - detailed studies of molecular gas (low-J CO, high density tracers, XDR vs PDR chemistry). Accurate measurements of molecular outflows.





NGC1266: Alatalo et al. 2011, 2014 (CARMA/ALMA)

# Outflows, feedback and radio emission from radio-quiet AGN

Wide-bandwidth Continuum:

NG-VLA at GHz frequencies – spectral index, surface brightness and morphology of synchrotron components.



Kimball et al. 2011 (VLA); but see also Greene & Zakamska 2014