NGVLA Observations of Initial Conditions in High-Mass Star-Forming Clouds

James Di Francesco January 4, 2016 NRC Herzberg Programs in Astronomy & Astrophysics

Stars form out of dense molecular gas

- Lada, Lombardi & Alves

 (2010) find a *linear* scaling between *N*(YSO) and the
 (H₂) mass of a cloud over a surface density threshold of ~116 M_☉ pc⁻²
- Interestingly, this threshold corresponds to a number density of ~10⁴ cm⁻³
- SFR (M_☉ yr⁻¹) =
 4.6 ± 2.4 × 10⁻⁸ M_{0.8} (M_☉)

Lada, Lombardi & Alves (2010); see also Lada et al. (2012)

NRC·CNRC

Herschel Observations: Aquila

HERSCHEL Round Belt SULVE

NRC.CNRC

Herschel 70, 160, 500 µm image of Aquila Rift

Könyves et al. (2010, 2015); Bontemps et al. (2010)

Threshold originates from cylinder fragmentation

- Core formation occurs primarily due to *fragmentation of parent filaments of ~0.1 pc width*
- mass per unit length M_{line} of an isothermal cylinder (see Ostriker 1964; Inutsuka & Miyama 1997)

• such cylinders *unstable* if:

 $M_{line} > M_{line, crit} = 2c_s^2/G$

 $\sim 16~M_{\odot}~pc^{\text{--1}}$ at 10 K

• if
$$M_{\text{line}} \sim 16 \text{ M}_{\odot} \text{ pc}^{-1}$$
, $W = 0.1 \text{ pc}$,
then $\Sigma_o = 160 \text{ M}_{\odot} \text{ pc}^{-2}$

André et al. (2010); Könyves et al. (2015)

NRC CNRC

Interpretation of the K-S scaling relation

- Σ(gas) < 10 M_☉ pc⁻²: gas is atomic, little but some H₂ / dense gas
- Σ(gas) ≈ 10-120 M_☉ pc⁻²: gas is atomic + molecular, latter are discrete clouds of constant column density
- Σ(gas) > 120 M_☉ pc⁻²: gas is molecular, little atomic gas

• is **dense filament**

fragmentation the universal process defining the onset of star formation in galaxies?

Bigiel et al. (2008); Kennicutt & Evans (ARAA; 2012); see also Schruba et al. (2011)

NRC·CNRC

High-mass Star Formation with HOBYS

NGVLA and High-mass Star-forming Filaments

NRC.CNRC

High-mass Star Formation and Ridges

- disorganized networks ('nests') and dominating 'ridges' show relative importance of turbulence vs. gravity
- high-mass stars only found in '**ridges**'; filaments of $A_V > 100$

Hill et al. (2011); Minier et al. (2012)

NCCNRC

Ridges and Filament Intersections

- massive clumps and IR clusters found at filament intersections
- more clustered star formation: mass flow along filaments into intersections?
 "secular" evolution? feedback?

NC.CNC

Herschel N(H₂) Probability Density Functions

Ammonia observations of nearby SF regions

- **NH**₃ rotational-vibrational emission traces dense gas, n_{crit} [NH₃(1,1)] ~ 10³⁻⁴ cm⁻³
- Can probe:
 - **ridge dynamics**, role of turbulence in formation
 - gas kinematics, flows from ridges to clusters, explore filament intersections
 - LOS gas temperatures, explore external heating
 - **abundances**, cf. accurate column densities

RAMPS results

Jackson et al. (2016, in prep)

- RAMPS: Radio Ammonia Mid-Plane Survey (PI: J. Jackson)
- numerous locations of extended NH₃ emission seen, many of which are high-mass star formation regions (at 33" FWHM)

High-mass SF regions need high resolution: NGVLA

- Targeting a maximum linear resolution of 0.1 pc
- At 15 kpc, 1.3" res. = 0.1 pc
- Can probe filaments and cores down to this critical length scale across most of the stellar disk of the Galaxy
- 1.3" at 23.7 GHz can be done with JVLA in C-configruation...

NRC·CNRC

High-mass regions need high sensitivity: NGVLA

ΔT(rms) ~ 3 K in 3.3 hr integration (0.1 km s⁻¹ channels, 27 antennas)

NCCNC

High-mass regions need high sensitivity: NGVLA

ΔT(rms) ~ 3 K in 3.3 hr integration (0.1 km s⁻¹ channels, 150 antennas)

NCCNC

 High-resolution (0.1 pc) molecular line observations of filaments in high-mass star-forming regions are a critical NGVLA target

• 150 antennas of 18-m diameter within 3 km can yield 1.3" beam sizes over a 2.66 arcmin FOV at 23.7 GHz (NH₃ lines), resolve filaments out to 15 kpc

 sample ~10x more fields to the same sensitivity as JVLA ("mapping speed") or 1 field to much greater sensitivity

• NGVLA wide-band could also sample *other* lines besides those of NH_3 , e.g., **CCS 2₁-1₀**, **HC₅N 11-10**, **H₂O 6₁₆-5₂₃**

Thanks to:

Philippe André, Vera Könyves, Arabindo Roy, Doris Arzoumanian, Derek Ward-Thompson and the Herschel Gould Belt Survey Team;

Frederique Motte and the Herschel OB Young Star Survey Team; and

Taylor Hogge, Jim Jackson, and the RAMPS team

Thank you

James Di Francesco Senior Research Officer Tel: 250-363-6925 james.difrancesco@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca

High-mass Star Formation and Ridges

- ridges formed and fed by filament merging
- sub-filaments also surround (feed?) dominant clump in Pipe Nebula

Hennemann et al. (2012), Schneider et al. (2010), Peretto et al. (2012)

NCCNRC

Ammonia observations of nearby SF regions

Green Bank Ammonia Survey (2016), in prep

NGVLA and High-mass Star-forming Filaments

NC.CNCC