

Long baselines in the ngVLA context Walter Brisken

Long baseline science drivers

- Imaging AGN jets
 - Big goal is to measure polarization of counter-jets
- Parallax distances to star forming regions (> 10 kpc)
 - Improve knowledge of shape/scale of Milky Way
- Stellar and pulsar astrometry
 - Planet hunting, multiplicity determination/orbitology
- Megamaser Cosmology Project
 - Geometric distances to galaxies in the Hubble flow \rightarrow H₀
- Local group dynamics
 - Determine 3D velocities of M31, M33, IC10, ...

VLBI synergy with ngVLA

- Possibility for a single array spanning baselines between 50 m and 5000 km
- ngVLA will provide a modern antenna and electronics design
 - Cost will be optimized due to quantity of antennas
 - Ultra-low maintenance will be a strong driver
- Identical antenna types would lead to low VLBI maintenance costs
 - Common software
 - Single spare part pool
 - Merged operations
- This talk describes a possible concept for implementing VLB capability on the ngVLA.

Goals of VLBI capability on the ngVLA

- Lower cost operations on a per-station basis than VLBA
- I0x the continuum sensitivity of the VLBA
 - At least double the collecting area on long baselines
 - At least double the aperture efficiency above 70 GHz
 - At least 64 times the bandwidth (>= 16 GHz per pol.)
- Robust calibration via paired antennas, WVRs, ...
- Good imaging capabilities
 - Carefully designed UV coverage
 - Possibly > 10 stations (VLBA imaging is marginal)
- Geodetic VLBI capabilities compatible with VGOS standard
- Continuity of VLBI capabilities in the US well into 21st century

Schematic layout of ngVLA with long baselines

Antennas and stations

- All antennas (central & VLB) built to same specification
 - Possibly some special electronics (e.g., pulse cal)
- 8 to 12 long baseline stations outside the central ngVLA
 - To be mainly, but not exclusively, used for VLBI
- ngVLA pseudo-stations could be formed from central ngVLA antennas as required by scientific programs
 - Could double or more long baseline collecting area on demand at moderate and temporary costs to shorter baselines
- Could add phased ngVLA inner core (up to 1 or 5 km)
- There is desire for more southerly antennas
 - A few stations in Mexico would improve low declination science

Station concept

- Collecting area to be in clusters with local infrastucture (stations)
 - 3 to 5 ngVLA antennas
 - Approx. 2x collecting area of a 25m antenna
 - Station size: ~100m
 - Common power, network, clock infrastructure for the cluster
- Each station could be:
 - Phased
 - Sub-arrayed (pointing, tuning, calibration)
 - Used independently
- In the phased mode, clusters provide smooth fail-over

Station locations

- Driven by:
 - Imaging UV coverage
 - Access to high speed network and power
 - Note: 4 antennas at 32 GHz \rightarrow I Tb/sec data rate!
 - High frequency performance: high and dry
- A mix of existing and new VLBI sites will be used
 - Some sites may support only cm wavelength observations

Operations concept

- Common operations and maintenance with ngVLA
- Antenna stations will be unstaffed
 - Routine (maybe semi-annual) visits for PM and repairs
- All electronic-transfer to ngVLA correlator
- Real-time correlation
- Increase ties with EVN and EAVN for long (>5000km) baseline science

Continuum performance

Frequency (GHz)	Resolution (mas)	Bandwidth (GHz)	Image Sens. (µJy)	Image Sens. (K)
2	8.6	1	3.8	24000
10	1.7	4	1.8	14000
30	0.57	16	1.3	9400
80	0.21	16	3.7	15000
100	0.17	16	5.7	17000

- Close to natural weighting
- Array dimensions: 4500 km x 2500 km
- 10 stations, each with 4 antennas
- I hour on-source integration

Enhanced continuum performance

Frequency (GHz)	Resolution (mas)	Bandwidth (GHz)	lmage Sens. (µJy)	Image Sens. (K)
2	12	1	2.2	4600
10	2.6	4	1.0	2700
30	0.9	16	0.75	1800
80	0.3	16	2.2	2900
100	0.25	16	3.3	3300

- Close to natural weighting
- Array dimensions: 4500 km x 2500 km
- 10 stations, each with 4 antennas
- 120 ngVLA antennas from central array added (4x collecting area)
- I hour on-source integration

Spectral line performance

Frequency (GHz)	Resolution (mas)	Bandwidth (MHz)	Image Sens. (µJy)
2	8.6	0.066	467
10	1.7	0.333	200
30	0.57	1	162
80	0.21	2.666	290
100	0.17	3.333	400

- 10 km/s line width
- Close to natural weighting
- Array dimensions: 4500 km x 2500 km
- 10 stations, each with 4 antennas
- I hour on-source integration

Enhanced spectral line performance

Frequency (GHz)	Resolution (mas)	Bandwidth (MHz)	Image Sens. (µJy)
2	12	0.066	260
10	2.6	0.333	110
30	0.9	1	90
80	0.3	2.666	160
100	0.25	3.333	220

- 10 km/s line width
- Close to natural weighting
- Array dimensions: 4500 km x 2500 km
- 10 stations, each with 4 antennas
- 120 ngVLA antennas from central array added (4x collecting area)
- I hour on-source integration

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Insert Date-Meeting Name