

ngVLA Technical Overview

Mark McKinnon ngVLA Science Workshop, 2016 AAS January 4, 2016

Outline

- ngVLA Concept
- Technical Issues to Consider in Science Use Cases
- Additional Information

ngVLA Concept

- Effective collecting area: I0x JVLA
- Frequency range: I-II5GHz
- About 300 antennas, ~18m diameter, fixed location
 - Distribution: about half on the Plains of San Augustin in New Mexico, with remaining half out to 300km

Nominal Technical Parameters

		-			
	2 GHz	10GHz	30GHz	80GHz	$100 \mathrm{GHz}$
Field of View FWHM $(18m^a)$ arcmin	29	5.9	2	0.6	0.51
Aperture Efficiency (%)	65	80	75	40	30
$A_{eff}^b x 10^4 m^2$	5.1	6.2	5.9	3.1	2.3
T_{sys}^c K	29	34	45	70	80
$Bandwidth^d GHz$	2	8	20	30	30
Continuum rms ^e 1hour, μ Jy beam ⁻¹	0.93	0.45	0.39	0.96	1.48
Line rms 1hour, 10 km s ⁻¹ , μ Jy beam ⁻¹	221	70	57	100	130
Resolution ^f FWHM milliarcsec	140	28	9.2	3.5	2.8
T_B^g rms continuum 1hr K	14	7	6	15	23
Line ^h rms 1hour, 1" taper, 10 km s ⁻¹ , μ Jy beam ⁻¹	340	140	240	860	_
${\rm T}_B^i$ rms line, 1 hour, 1" taper, 10 km s^{-1}, K	100	1.8	0.32	0.17	_
alle den immetiestiene enterne diemsterne fram 10m te 00m ene being energidened					

^aUnder investigation: antenna diameters from 12m to 25m are being considered.

^b300 x 18m antennas with given efficiency.

^cCurrent performance of JVLA below 50GHz. Above 70GHz we assume the T_{sys} =60K value for ALMA at 86GHz, increased by 15% and 25%, respectively, due to increased sky contribution at 2200m.

^dUnder investigation. For much wider bandwidths, system temperatures are likely to be larger.

Carilli et al. 2015, ngVLA memo #5

Pointed or Survey Telescope?

- ngVLA is envisioned to be a general purpose, PI-driven, pointed telescope
 - Used much like current JVLA
 - Can be used for occasional, dedicated surveys (e.g. FIRST, NVSS)
- ngVLA is not a dedicated survey instrument that delivers generic data products (e.g. a radio-LSST)
 - Drives telescope design in a very different way (large N, small D)

Technical Issues for Consideration in Science Use Cases

ngVLA Science Workshop – 2016 AAS

January 4, 2016

Phase Calibration

- Options (Clark, ngVLA memo #2)
 - Self calibration
 - Fast switching (Carilli, ngVLA memo #1)
 - Dedicated reference array (Owen, ngVLA memo #4)
 - Paired antennas
 - Water vapor radiometers
- See D. Woody's presentation for assessment of options

Array Configuration

- Sensitivity to low surface brightness. Options:
 - Large array of smaller diameter (~12m) antennas
 - Compact array of smaller diameter antennas at the core of the overall array (similar to ALMA)
 - Large single dish (e.g. GBT)
 - (See B. Mason's presentation for assessment of options)
- VLBI implementation. Options:
 - Used in concert with other, existing telescopes
 - ~20% of collecting area, perhaps in groups of antennas, on long baselines
 - (See W. Brisken presentation for implementation possibilities)
- Fixed or moveable antennas?

Antenna Optical Configuration – I

- Offset Gregorian
- Likely optical configuration if science priority is high dynamic range imaging at low frequency
 - Excellent receiver performance (i.e. low Trx) at these frequencies
 - Tsys dominated by scattering, spillover, sidelobe pick up
 - Mitigate with unblocked aperture
 - Large number of background sources
- Standing waves reduced
- Easier access to receivers and cryogenics, particularly in a feed low design

Antenna Optical Configuration - II

- Symmetric Cassegrain
- Likely optical configuration if science priority is sensitivity at high frequency
 - Tsys dominated by atmosphere and receiver
 - Fewer background sources (dynamic range not a big science driver?)
- Design inherently more stiff (symmetric)
 - Can more easily accommodate fast switching requirement
- Lower cost

Receiver Band Definition

- High bandwidth ratio feed (BWR 3:1 7:1)
 - Excellent continuum sensitivity
 - Cover desired frequency range with fewest number of receivers
 - Minimizes operations costs
- But when compared to conventional corrugated horns (~2:I BWR), high BWR quadridge flared horns (QRFH) tend to have:
 - Higher cross-polarization (by $\sim 10 \text{ dB}$)
 - Freq-dependent beamwidths (lower aperture efficiency at high freq)
 - Higher sidelobes (higher Tsys and RFI susceptibility)
 - Asymmetric beam patterns (adversely impact dynamic range)
- Guidance needed on band definition to capture desired molecular lines in a single band

Additional Information

- ngVLA webpage
 - <u>https://science.nrao.edu/futures/ngvla</u>
- ngVLA memo series
 - <u>http://library.nrao.edu/ngvla.shtml</u>
- ngVLA science working groups
 - <u>https://science.nrao.edu/futures/ngvla/science-working-groups</u>

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

January 4, 2016