

galaxy evolution: the UVOIR view

- star formation and stellar mass assembly history
- evolution of star forming main sequence & downsizing
- quenching of star formation, build up of quiescent population accompanied by structural and morphological transformation

predicted structural, kinematic, & morphological properties as well as SF history of galaxies highly sensitive to details of implementation of 'sub-grid' physics (multi-phase ISM, chemistry, stellar & BH feedback, etc)

Christensen et al. 2012 (as reproduced in Somerville & Davé 2015)

constraining the gas content in all phases is crucial for constraining the physical processes that drive galaxy evolution

- what determines the efficiency of converting [cold, dense] gas into stars? [how] does it depend on environment or other variables?
- what are the relative roles of radiative, thermal, & kinetic feedback processes? how does this depend on spatial scale & conditions?
- is stellar feedback primarily 'ejective' or 'preventative'?
- how important are turbulence, magnetic fields, cosmic rays etc?

Modeling multi-phase gas in cosmological simulations

rss, Popping & Trager 2015; Popping, rss & Trager 2014; Berry, rss et al. 2014; 2015 see also Fu & Kauffmann 2010, 2011; Lagos et al. 2011 a,b; Obreschkow et al. 2009

two main approaches used:

- H₂ fraction depends on gas density, dust-to-gas (metallicity) and intensity of local UV radiation field OR
- 2) H₂ fraction depends on disk midplane pressure

see also Robertson & Kravtsov 2009; Krumholz, McKee & Tumlinson 2008a,b, 2009 Gnedin & Kravtsov (2010, 2011); Christensen et al. 2012; 2014; Lagos et al. 2015

multi-phase gas scaling relations for disks at z=o

both the pressure &
metallicity based recipes
reproduce observed
H2/HI fractions at z=0

dots=observations from Leroy et al. 2008 (THINGS) Saintonge et al. 2011 (COLD GASS)

Popping, rss & Trager '14

evolution of HI mass function with cosmic time

models predict very weak/no evolution since z~2

evolution of H2 mass function with cosmic time

models predict relatively weak evolution to $z\sim6$ compared with stellar mass function

observations are shown at z=o

Popping, rss & Trager '14 see also Berry et al. 2014

7.0 7.5 8.0 8.5 9.0 9.5 10.0 7.0 7.5 8.0 8.5 9.0 9.5 10.0 $\log m_{star} (M_{sun})$

naïve expectation: low mass galaxies at v. high redshift will have difficulty forming molecular hydrogen due to their low Zs

model prediction:
galaxies have very
high gas surface
densities and enrich
quickly. → H₂ fractions
are higher than in
nearby galaxies.

same models presented in SPT15

molecular gas depletion times

mol. depletion times in nearby spirals (Leroy et al. 2013)

model w/ density dep. t_{dep, mol}

> horizontal dashed line= age of universe

Combining multi-phase SAM with PDR+RT modeling

PhD thesis of Gergö Popping (w/rss, S. Trager & M. Spaans)

- -construct galaxy realizations based on SAM properties
- -populate ISM with 'clouds'
- -line emission and radiative transfer

CO SLED for typical "main sequence" galaxies from z=0-2

ISM was warmer and denser at high redshift, leading to more 'high-J' emission

detailed predictions for CO LF evolution to z~6 based on SAM+GCE+PDR+RT G. Popping et al. in prep

Summary

- the 'grand challenge' of galaxy formation theory is to replace phenomenological recipes with detailed physics – but this problem is too hard to do without help from observations
- ngVLA will provide unique constraints on key physical processes (star formation, stellar feedback, black hole growth, outflows, etc) in nearby and distant galaxies -- crucial for progress in theoretical modeling
- exciting synergy with other proposed facilities at other wavelengths