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galaxy evolution: the UVOIR view

e star formation and stellar mass assembly
history

e evolution of star forming main sequence &
downsizing

e quenching of star formation, build up of
guiescent population accompanied by

structural and morphological transformation
Madau & Dickinson 2014 Whitaker et al. 2014 Brinchmann et al. 2003
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yrmation: The Grand Challenge

large-scale structure: 100’s of Mpc

galaxy environment: ~1-8 Mpc

galaxy internal structure ~0.1-1 kpc

Giant Molecular clouds: ~10’s of pc

star clusters/SNae: pc/sub-pc

structures associated with supermassive BH:
pc/sub-pc

+ diverse array of physical processes

all cosmological simulations currently use
phenomenological 'sub-grid’ recipes — the challenge
is to replace these with fundamental physics
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constraining the gas content in all
phases is crucial for constraining
the physical processes that drive
galaxy evolution

« what determines the efficiency of Galaxies
converting [cold, dense] gas into stars?
[how] does it depend on environment or
other variables?

« what are the relative roles of radiative,
thermal, & kinetic feedback processes? cixo Riyaas
how does this depend on spatial scale &
conditions?

» isstellar feedback primarily ‘ejective’ or
‘preventative’?

« how important are turbulence, magnetic
fields, cosmic rays etc?




Modeling multi-phase gas
in cosmological simulations

rss, Popping & Trager 2015; Popping, rss & Trager 2014; Berry, rss et al. 2014; 2015
see also Fu & Kauffmann 2010, 2011; Lagos et al. 2011 a,b; Obreschkow et al. 2009

two main approaches used:

1) H, fraction depends on
gas density, dust-to-gas
(metallicity) and intensity

Z=1.0
0.3

of local UV radiation field - i 0.1
OR g 0.01
) 0.001

2) H, fraction depends on
disk midplane pressure

10 100 1000
gas density [M,, /pc’]

see also Robertson & Kravtsov 2009: Krumholz, McKee & Tumlinson 2008a,b, 2009
Gnedin & Kravtsov (2010, 2011); Christensen et al. 2012; 2014; Lagos et al. 2015
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both the pressure &
metallicity based recipes
reproduce observed
H2/HI fractions at z=0

dots=observations from
Leroy et al. 2008 (THINGS)
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(COLD GASS)

Popping, rss & Trager ‘14



evolution of HI mass function with cosmic time

models predict very weak/no evolution since z~2

(observations are at z=0)

Popping, rss & Trager ‘14



evolution of H2 mass function with cosmic time

models predict relatively weak evolution to z~6 compared with stellar mass function

observations are shown at z=o

Popping, rss & Trager ‘14
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naive expectation:

low mass galaxies at

v. high redshift will
have difficulty forming
molecular hydrogen
due to their low Zs

model prediction:
galaxies have very
high gas surface
densities and enrich
quickly. = H, fractions
are higher than in
nearby galaxies.
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molecular gas depletion times
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Combining multi-phase SAM
with PDR+RT modeling

PhD thesis of Gergd Popping (w/ rss, S. Trager & M. Spaans)

-construct galaxy realizations based on SAM properties
-populate ISM with ‘clouds’
-line emission and radiative transfer

4  G. Popping, J.P. Pérez-Beaupuits, M. Spaans, S.C. Trager and R.S. Somerville

* M, M., My, My, *p,(r,z) « Integrated line-
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CO SLED for typical "main sequence” galaxies from z=0-2

ISM was warmer and denser at high redshift, leading to more ‘high-J’
emission
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detailed predictions for CO LF evolution to z~6 based on SAM+GCE+PDR+RT

G. Popping et al. in prep
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summary

* the ‘grand challenge’ of galaxy
formation theory is to replace
phenomenological recipes with detailed
physics — but this problem is too hard to
do without help from observations

 ngVLA will provide unigue constraints on
key physical processes (star formation,
stellar feedback, black hole growth,
outflows, etc) in nearby and distant
galaxies -- crucial for progress in
theoretical modeling

 exciting synergy with other proposed
facilities at other wavelengths
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