THE GREEN BANK TELESCOPE AT HIGH FREQUENCIES THE WORLD'S LARGEST SINGLE DISH FACILITY OPERATING AT 20-115 GHZ

NEW HIGH FREQUENCY CAPABILITIES OF THE GBT SINCE THE PORTFOLIO REVIEW

- Improved performance at high frequencies
- Array receivers at 23 and 90 GHz
- Bolometer array at 90 GHz
- Routine operations at 3 mm

THE GBT TODAY IS A DIFFERENT FACILITY THAN THE 2005-2011 ONE REVIEWED

KEY SCIENCE AT 23 TO 115 GHZ

Star formation

- Fragmentation and collapse of clumps and cores
- Filaments and turbulent structure in molecular clouds
- Changing dust properties within molecular clouds
- Galaxy formation & evolution
 - Physical conditions and star formation rates in galaxies
 - Surveys of high-redshift galaxies

Cluster structure via the Sunyaev Zeldovich effect

Comets

AGN and Blazars

THE CRUCIAL ROLE OF A LARGE SINGLE DISH Mapping Speed

- Many-pixel receivers and bolometers cover large areas quickly with good surface brightness sensitivity
- Whole GMCs, large parts of the Galactic Plane, entire galaxies, and clusters
- Bandwidth

Spatial Dynamic Range (context)

- In the Milky Way, the single dish captures spatial scales from ~0.1 to >100 pc, essential to understand SF and ISM structure
- Resolve substructure while covering entire clusters, whole galaxies and CGM

Exploration

 New instruments, speculative projects, and big, wide-area surveys are all wellmatched to the single dish

STAR FORMATION: LINES: GAS DYNAMICS, TEMPERATURE, CHEMISTRY

STAR FORMATION: CONTINUUM: FILAMENTS AND DUST PROPERTIES

mm-cm sized dust; GBT: 9" resolution

FAINT LINES IN NEARBY GALAXIES

Sensitivity to map faint lines that trace star-forming, dense gas.

Trace gas density, star formation rate of dense gas across galaxies.

Resolution of a 100-m dish.

ARGUS multiplies the speed of such mapping by a factor of 8.

Single pixel HCN and HCO+ maps of M82 using GBT (Kepley et al. 2014).

SUNYAEV-ZEL'DOVICH EFFECT

MUSTANG observations of MACS 1206-0847

SZ effect reveals highpressure structure not seen in existing X-ray data

May be evidence for material infalling into the cluster

A CRITICAL ELEMENT OF MM-WAVE VLBI

Science apps: resolve 100 µarcsec-scale structure of:

- Acceleration & collimation of relativistic jets (e.g., M87)
- Magnetic field structure near near base of relativistic jets & in young stellar objects
- Faraday rotation maps to probe interstellar medium in galactic nuclei
- Water, etc. masers in star-forming regions & evolved carbon stars
- Masers in accretion disks to measure black hole masses

GBT: UNIQUE COMBINATION OF LARGE COLLECTING AREA + FOV

- Superb platform for array receivers
- Key science:
 - Large-scale and multi-line surveys
 - Sensitivity to faint extended emission

CURRENT GBT ARRAYS

- KFPA: ~23 GHz, 7-elements heterodyne
- ARGUS: ~90 GHz, 16-elements heterodyne
- MUSTANG-2: ~90 GHz, 223-elements bolometer

K-BAND FOCAL PLANE ARRAY (KFPA) NH₃ MAPPING

NH₃ (1,1); RAMPS survey

ARGUS: 75 – 115 GHZ SPECTROSCOPY

FUTURE ARRAYS: SCALABLE PHASED ARRAY FEEDS

64 element 3-mm PAF (UMass; Erickson)

GBT: EFFECTIVE AREA FOR MAPPING

$$A_{eff} = \eta \pi r^2 N_{ant} N_{elem}$$

	46 GHz		90 GHz		
	Rx elements	Eff. Area (m ²)	Rx elements	Eff. Area (m ²)	
ALMA	1	4,927	1	4,927	
GBT	1	4,791	16	47,752	
GBT	500	2,395,464	900	2,387,610	

GBT already achieves ~10x more collecting area for large scale mapping than ALMA at 90 GHz Maximal arrays could have 500x larger A_{eff}

THE GBT HAS EXTRAORDINARY SENSITIVITY: COMPETITIVE WITH ANY WORLD FACILITY

Time to map 3'x3' region at 3mm to T_A *=20 mK

GBT 2015	ARGUS 2016	GBT 2020	ALMA	ALMA	ALMA	ngVLA
1 Pixel	16 Pixels	50 Pixels	50x12m	50x12m	10x7m	500x18m
8"	8"	8"	3"	1"	23"	1"
21h	3.3h	<1h	19h	1,500h	0.5h	17,500 h

Declination 0°, 1 km/s velocity resolution, Ta*, GBT 2000h/yr opacity

SUBSTANTIAL GBT OBSERVING TIME IS AVAILABLE AT HIGH FREQUENCIES

HOURS AVAILABLE PER YEAR

Frequency	tau < 0.1	tau < 0.2		
22 GHz	2600 h	4000 h		
45 GHz		2800 h		
86 GHz	975 h	2100 h		

MID-SCALE NEAR-TERM IMPROVEMENTS • POINTING

- SURFACE
- INSTRUMENTS

POINTING AND EFFICIENCY

Substantial improvements can be achieved by real time monitoring of surface and feed arm position with off-theshelf technology.

~0.5\$M

INSTRUMENTATION

- LARGER ARRAYS can take advantage of recent advances in technology
 - Correlators
 - Multi-pixel highly integrated receivers
 - Phased array feeds
 - ~few \$M

SUMMARY

- Large scale/bandwidth mapping and low surface brightness are the province of a single-dish, and the GBT is a very large single-dish
 - Interferometers are not the end-all
- The GBT is well-placed to be at bleeding edge of 20 115 GHz science
 - It is a much improved facility
- With modest investment it will be a incredibly powerful and complementary national facility with unique strengths available to US astronomers