Imaging with EoR Instruments

Bryna Hazelton Radio Futures II, Baltimore, Aug 4 2016

Why Imaging?

- Foreground imaging: subtraction for EoR PS
- EoR Imaging: connect to other probes & wavelengths
 - Cross-correlation with CMB, large scale structure and galaxy surveys
 - Giving the ionization context for JWST and other observations of early galaxies
 - Does not require arcsecond resolution. ~½ degree resolution is sufficient

Imaging with foreground filtering

Beardsley et al. 2015

Imaging with foreground filtering

Beardsley et al. 2015

Primary Challenge: Calibration

- The sky is full at these frequencies
 - MWA and LOFAR calibration sky models have >1k sources, including in sidelobes
- Requires:
 - Excellent sky and instrument models
 - Good uv coverage
 - Very smooth instrumental bandpass

left: simulation with 6950 source middle: simulation with brightest 4k sources right: residual (2950 dim sources) Barry et al., 2016

- Model, calibrate and subtract all 6950 sources just leaves the EoR signal
- No signal loss

left: model, calibrate, subtract brightest 4k sources middle: perfect calibration, subtract brightest 4k sources right: power spectrum difference

- Fit smooth functions to per-frequency, per-antenna solutions
- 2nd order polynomial in amplitude, linear in phase per antenna

- Fitting for actual antenna frequency structure
- Fit 150 m cable mode on affected tiles
- Affected mode is unavailable for EoR

- Maximal averaging of calibration solutions
- averaged over all 128 tiles, 30 minutes (excluding 2σ outliers)
- Residual is at EoR level

recommendation: No frequency structure > 10⁻⁵ on scales smaller than 8 MHz (125 ns)

Excellent Sky Models: KATALOGSS

- Operates on FHD deconvolution components from a single night of observing (74 2-minute observations)
- Clustering & Machine Learning algorithms to identify reliable sources, verification through matching to existing surveys
- Complete to ~80 mJy within FWHM of beam
- High fidelity catalog designed for 21cm cosmology
- 1" astrometry on 2.3' beam
- 17 new radio sources

KATALOGSS

Power Spectrum difference using MWACS and KATALOGSS

Carroll et al., 2016

Excellent Sky Models: Diffuse Models

Beardsley et al., in review

Imaging Frontier

- Help improve EoR PS measurements
- Open the door to new science
 - cross-correlation studies
 - providing HI ionization context for early galaxies

Imaging Frontier

- Several current and future telescopes are planning for imaging
 - MWA phase II & III
 - 128 new antennas, 72 in a redundant array
 - new digital system, smooth bandpass
 - Imaging capabilities for HERA not currently funded but desired
 - LOFAR
 - SKA Low

Imaging Frontier

- Tools and techniques for calibrating, imaging and building sky models for these experiments are being developed
- Instrumental requirements:
 - good uv coverage
 - smooth bandpass

Phase 2 Core Region

ICRAR

KATALOGSS

Carroll et al., 2016

KATALOGSS

Carroll et al., 2016

Master Catalog

Sidelobe sources matter

 Power spectrum difference of residuals with and without sidelobe sources in the model

Pober et al., 2016

left: number density of deconvolution components (9416 from 74 2-minute observations) right: flux density of deconvolution components

Carroll PhD Thesis, 2016

Carroll PhD Thesis, 2016

left: Gaussian smoothed deconvolution components right: down sampled by a factor of 4 & flux normalized

Carroll PhD Thesis, 2016

Carroll PhD Thesis, 2016