

ngVLA Session Summary

Eric J. Murphy US RMS Futures II August 5, 2016

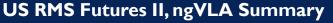
https://science.nrao.edu/futures/ngvla

Thanks to the ngVLA SOC

- Bryan Butler
- Chris Carilli
- Alessandra Corsi
- Andrea Isella
- Amanda Kepley
- Mark McKinnon
- Steve Myers
- Alexandra Pope
- Hilke Schlichting

Next Generation VLA

- Thermal imaging at milli-arcsecond resolution
- 10x effective area and resolution of JVLA
 - ~300x18m antennas; ~300km baselines
- Frequency range: 1.2 –116GHz
- Located in southwest US, centered on present location of JVLA



Next Generation VLA

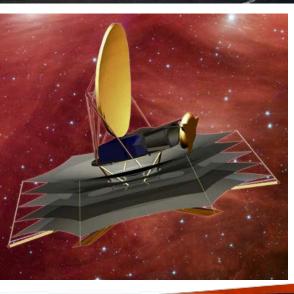
- Reasonably conceived baseline design
- Low technical risk (could be built today)
- Need to iron out a number of challenges/options
 - e.g., frequency bands, configuration, phase calibration...
 - A Series of Compromises and tough decisions

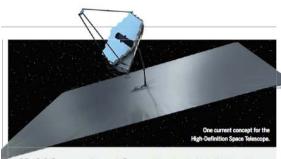
Notional Parameters

Carilli et al. 2015, ngVLA memo #5

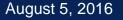
	2GHz	10GHz	30GHz	80GHz	$100 \mathrm{GHz}$
Field of View FWHM $(18m^a)$ arcmin	29	5.9	2	0.6	0.51
Aperture Efficiency (%)	65	80	75	40	30
$A_{eff}^b x 10^4 m^2$	5.1	6.2	5.9	3.1	2.3
$T_{sys}^c K$	29	34	45	70	80
$Bandwidth^d GHz$	2	8	20	30	30
Continuum rms ^e 1hour, μ Jy beam ⁻¹	0.93	0.45	0.39	0.96	1.48
Line rms 1hour, 10 km s ⁻¹ , μ Jy beam ⁻¹	221	70	57	100	130
Resolution ^f FWHM milliarcsec	140	28	9.2	3.5	2.8
T_B^g rms continuum 1hr K	14	7	6	15	23
Line ^h rms 1 hour, 1" taper, 10 km s ⁻¹ , μ Jy beam ⁻¹	340	140	240	860	_
T_B^i rms line, 1hour, 1" taper, 10 km s ⁻¹ , K	100	1.8	0.32	0.17	_

US RMS Futures II, ngVLA Summary


sociated Universities Inc

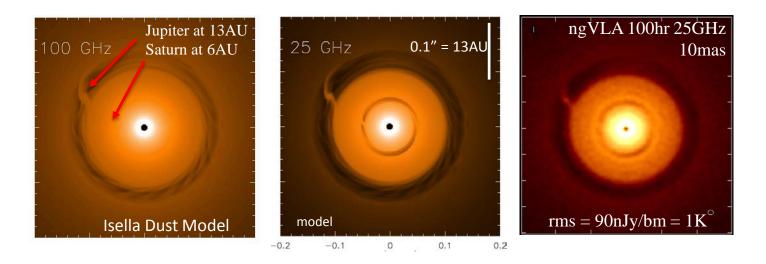

Highly Synergistic with Other Facilities on Similar Timescales

- SKA
 - Atomic/non-thermal
 - Molecular/thermal
- ALMA
 - Warm/star-forming
 - Cold/dense fuel for SF
- LUVOIR
 - Image earth-like planets
 - Image forming planets
- FIRS
 - C/WNM & WIM
 - Cold Molecular Medium



Hubble on steroids

For astrophysicists, HDST would "transformational," says commit-



SWGs & Key Requirements (2yr effort to date)

- Four science working groups (SWGs) established at ngVLA workshop at 2015 AAS
 - Cradle of Life (Isella, Moullet, Hull)
 - Galaxy Ecosystems (Leroy, Murphy)
 - Galaxy Assembly through Cosmic Time (Casey, Hodge, Lacy)
 - Time Domain, Cosmology, Physics (Bower, Demorest)
- SWG white papers (ngVLA science goals 125 authors, 200 pages) published in *http://library.nrao.edu/ngvla.shtml* and on arXiv.
- Preliminary science requirements developed from white papers
 - Still early times in design and we need more community input

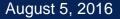


Image terrestrial zone planet formation AU-scale imaging 1Myr protoplanetary disk at 140pc distance

- Frequency: need low optical depth on AU-scales => 30GHz
- Resolution: need 1AU resolution at 130pc = distance to nearest star forming regions (eg. Taurus, Ophiucus) => 10mas
- Sensitivity: need 1K brightness at full resolution => 10x VLA, ALMA

CHEMISTRY OF STAR AND PLANET FORMATION

- Complex organic (including prebiotic) molecules are the building blocks of life.
- Warm sources are more easily detected in the submm, but line blending is a killer.
- For cold sources, $\lambda \sim 0.5$ to 1 cm may be ideal.

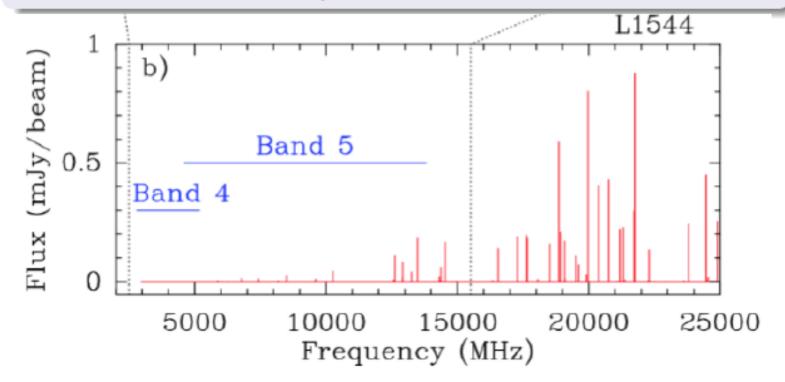
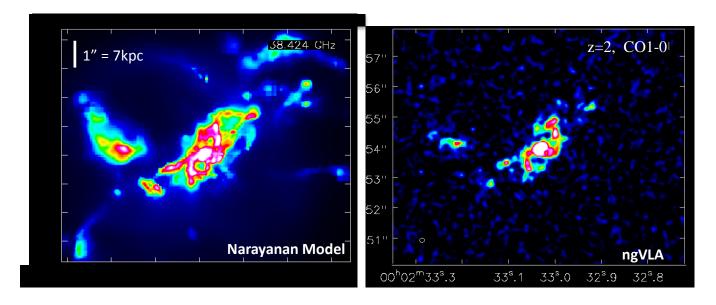


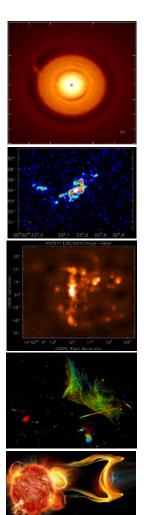

Fig: Simulations of the spectrum of Glycine (NH_2CH_2COOH) for a pre-stellar core in SKA bands. Codella+2014.



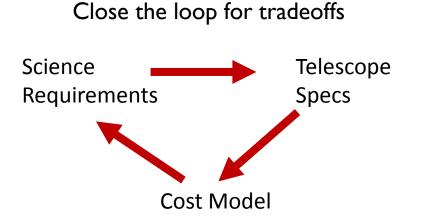
US RMS Futures II, ngVLA Summary

sociated

Dense gas history of Universe Imaging 'fuel for star formation' during epoch of galaxy assembly



- Frequency: need low order CO at $z \sim 1$ to $5 \Rightarrow 20$ to 50GHz
- Resolution: need ~ $1 \text{kpc} \Rightarrow 0.15$ "
- Sensitivity: need to reach few 10^8 M_{o} at $z \sim 2 \Rightarrow 12 \text{uJy} @ 100 \text{ km/s}$
- FoV, BW: 100x JVLA, ALMA spectral deep field survey speed (1000's vs 10's of galaxies) => 18m antenna, 20GHz BW



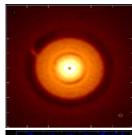
Next step: Fine-tune Science Requirements and map to Telescope Specifications

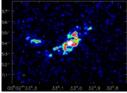
Goal	Science Requirement	Array Specification
TPF	Optically thin	Freq ~ 15 to 50GHz
	1AU at 130pc @ 30GHz	B ~ 300km
	1K in 10hrs @ 10mas, 30GHz	A _{full} ~ 300 x 18m; BW ~ 20GHz
CGHU	CO 1-0 to z=8	Freq = 15 to 115GHz
	$M_{gas} = 10^9 M_o$ at z = 3 in 1hr	A _{mid} ~ 70% to B ~ 30km
	500pc resolution at z = 3 (60mas)	30km
	Large volume surveys	Octave Band Ratio
Baryon Cycle	T _B < 0.2K (1hr, 10 km/s, 80GHz, 1")	A _{core} ~ 30% to B ~ 2km
	Continuum science	Octave BR; Linear pol to 0.1%
Time Domain	Explosive follow-up (GRBs, GW/EM)	Minute trigger response time
	Blind discoveries (eg. FRBs)	millisec searches
	Exo-space weather: 1uJy in 1min	Freq ~ 1 to 20GHz A _{full} ~ 300 x 18m Circular pol to few %

Goal: PDR-level 'proposal' to 2020 Decade Survey

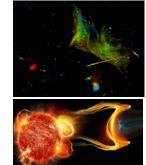
- Compelling science program
- Defensibly costed design of all major elements

WBS #	Project WD3 & Budget (2010 03D, Start Date 1	
	Description Project Management & Administration	
	Systems Engineering & AIV	
	Scientific Support & Commissioning	
	Antennas	
	Antenna Electronics	
5.01	Analog Front End (Feed, Receiver)	
5.02		
5.02		
5.04		
5.05	· · · · · · · · · · · · · · · · · · ·	
5.06		
5.07		
5.08		
5.09	Bins, Modules & Racks	
5.1	HVAC & Electrical System	
5.11	Non Recurring Engineering Effort	
6	Central/Distribution Electronics (LO, DTS)	
7	Correlator	
8	Computing & Software	
8.01	Proposal Submission & Handling (PST, PHT)	
8.02	Observation Preparation (OST)	
8.03	Array Monitor & Control (Executor, M&C, etc.)	
8.04	Array Operations Tools (Operator Console & Screens	
8.05	Array Calibration (TelCal, AntSol, etc)	
8.06	Calibration Pipeline (CASA Pipeline)	
8.07	Imaging Pipeline (Casa Pipeline)	
8.08	Archive	
	IT Infrastructure	
	Array Infrastructure	
10.01		
10.02		
10.03		
10.04		
10.05	,	
10.06		
	······································	
	Buildings Science Operations Building	
	Central Operations Building	
	Small Operations Stations	
	Technical Services Building(s)	
	Visitor Center	
11.00	Construction Broject Sub Total	




ociated


	Cradle of Life	
nnas		
antennas		


Science/Technical Issues under Discussion

- Need to refine science program (open ended)
- Phase calibration
 - Paired antennas, dedicated reference array, water vapor radiometers, fast switching, self-calibration
- Array configuration
 - Sensitivity to low surface brightness
 - Fixed or moveable antennas
 - VLBI implementation
- Antenna optical configuration
 - offset Gregorian, symmetric Cassegrain, other
- Receiver band definition & Frequency cutoffs
 - Tradeoffs between system temperature, aperture efficiency, beam shape, operating cost, etc. with receiver band ratio

Moving Forward: ngVLA Project Office

- ngVLA Project Office will be established in Q4 CY2016
- Office will initially consist of:
 - Project Scientist: serves as liaison between NRAO and Science Advisory Committee/astronomy community
 - Project Director: sets direction, consolidates scientific and technical requirements, and arranges for development of the ngVLA proposal to the 2020 Decadal Survey
- Sign up for ngVLA mailing list:

https://science.nrao.edu/futures/ngvla

Moving Forward: ngVLA Community Studies Program

- Purpose: Provide astronomy community the opportunity to make in-depth contributions on issues related to the ngVLA design
- Information: <u>https://science.nrao.edu/futures/ngvla/ngvla-</u> <u>community-studies-program-call-for-proposals</u>
- NRAO support for studies program:
 - Provide travel and page charge support for most accepted proposals
 - Fund ~6 grants for study support at level of ~\$10K \$25K
 - NRAO scientist assigned to each study for assistance and to monitor progress
- Proposals reviewed by experts from the community and NRAO

US RMS Futures II, ngVLA Summary

Study reports to take the form of a refereed publication or ngVLA memorandum

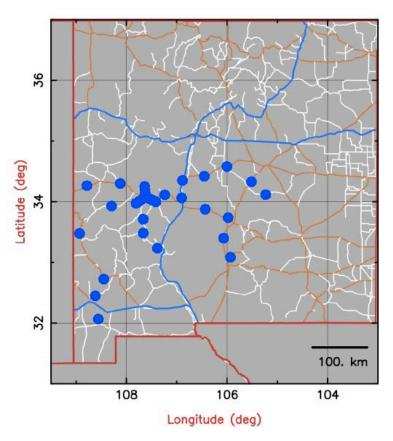
Schedule for Community Studies Program

- August 8: call for proposals
- August 15: pre-proposal teleconference
- September 15: proposal submission deadline
- October: announce accepted proposals/funding awards
- ~June 2017: report findings at ngVLA Science Meeting
- August 2017: final reports due

ngVLA Community Studies

Science Studies

- Terrestrial Planets and Astrochemistry
- Chemistry of the Early Universe
- Exo-space Weather
- Dynamic Sky
- Near Earth Sensing
- Baryon Cycling: 3mm Science and Implications
- Low frequency options
- VLBI/Astrometry
- Plasma Physics
- SETI
- Other...


Technical Studies

- Advanced Cryo-cooling
- Ultra-wideband Feed tradeoffs
- Phase Calibration Options
- Total Power
- Re-Configurability /Configuration
- Data Backhaul
- Time Distribution
- Other

Example CS: Configuration

- Can we come up with a configuration design that delivers :
 - 1. A core array that has ~4x better T_B sensitivity at 1" than ALMA
 - 2. A ~10km array that has ~7x
 better point source sensitivity at
 30GHz than VLA/ALMA for high-z
 CO
 - A ~300km array that has factor ~10 better imaging capability than VLA/ALMA at30GHz (1K rms at 10mas)

Science Advisory Council (SAC)

- SAC is the interface between the science community & NRAO
 - ngVLA project scientist will be the SAC point of contact
- SAC composed of SWG chairs & at-large members. Composition:
 - Baryon Cycling (2)
 - Galaxy Assembly (2)
 - Cradle of Life (2)
 - Time Domain/Physics/Cosmology (~3)
 - At-large (4-6)
 - Includes representation from non-radio astronomers & strategic partners
- SAC co-chairs selected from above

ngVLA 2017 Science Meeting

- To be held in/around Socorro in early June 2017
- Tentative general program:
 - Highlight recentVLA science (2010+)
 - Reports from grant recipients and participants in ngVLA
 Community Studies program
 - Presentations on transformational science in astronomy and astrophysics that can be done with ngVLA
 - Definition of path forward for the ngVLA design to be presented at US RMS Futures III

Strategic Partnerships (franchising)

- Need ~3 agencies on board to get funding
 - e.g., NSF, NASA/DSN, Near Earth Sensing
 - VLBI: Astrometry post GAIA, satellite tracking
 - Low-frequencies: exoplanet imaging, Radar
 - Student training:
 - University participation during commissioning
 - Leave a couple of dishes for training

US RMS Futures II, ngVLA Summary

Tentative Plan Forward

- Fall 16: CSs funded; SAC established
- Winter 16/17: TAC established; CSs ongoing
- June 2017: CSs report out
- Summer 2017: work into consensus design
- Aug. 2017: K3 Converged Concept
- 2018: Write up for Astro2020
- Sign up, listen, actively contribute:

https://science.nrao.edu/futures/ngvla

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

US RMS Futures II, ngVLA Summary

August 5, 2016

Current Project Timeline

- Early 2019: Propose ngVLA concept to 2020 Decadal Survey
- Early/mid 2020s: with Decadal Survey endorsement, seek funding for design and development phase
- Mid/late 2020s: Seek construction finding

