

Pulsars, Gravitational Waves, and Cosmic Bursts

David Kaplan (University of Wisconsin-Milwaukee) kaplan@uwm.edu following discussions with NANOGrav and many others

> Radio Futures II August 2016

Outline

- Science drivers
- Current capabilities:
 - What we need for the next 5 years: Arecibo & GBT
- What will the next decade look like?
 - Ensure that the US retains leadership position
 - Need substantial (~100 hours/month) access to ≥300-m scale facility
 - Build on existing resources
 - New telescope? Upgrade facilities? Join collaborations?

Science Questions

- What is the cosmic history of black hole formation and growth?
- What other sources of low-frequency gravitational waves exist?
- What is the correct theory of strong gravity?
- NSF Big Idea #6: Windows on the Universe: the Era of Multi-Messenger Astrophysics
- Why do pulsars shine?
- What is the origin of fast radio bursts?
- Where are intergalactic baryons & magnetic fields?

See talks from Radio Futures I

Priorities

To maintain and grow US leadership and student training in pulsars, gravitational waves, and fast transients:

1.Ensure ≈Arecibo sensitivity with **significant share of observing time** for pulsar searching & timing

- 1.a. Continue to upgrade capabilities of Arecibo & GBT
- 1.b. Gain sufficient access to MeerKAT/SKA1 & FAST

1.c. Develop new concept with simplified requirements (not necessarily SKA)

2. Develop FRB experiments

2.a. Merge into larger facilities as population is defined

4 Technique Areas

Pulsar searching

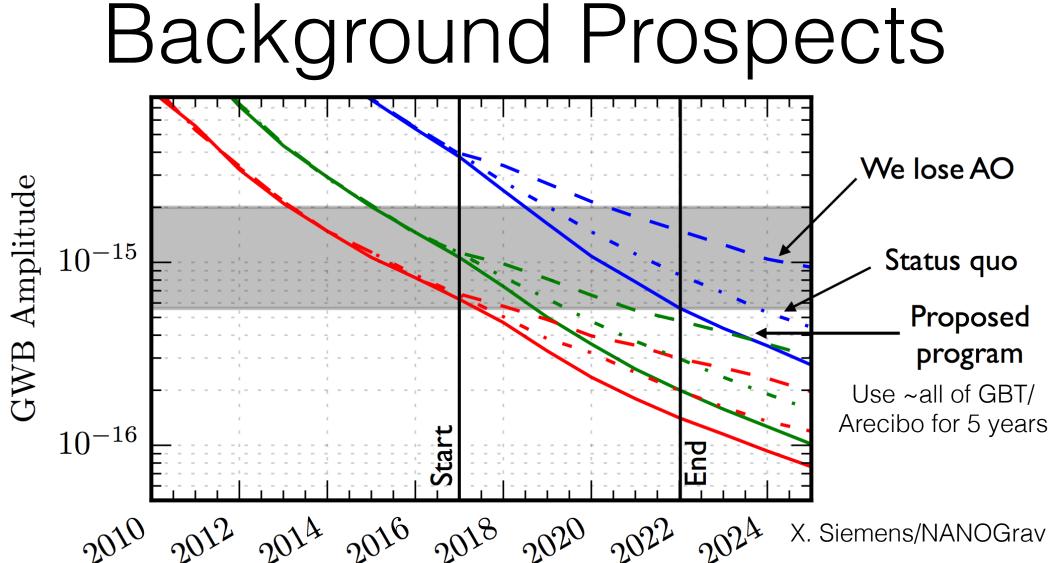
- New & interesting systems, population statistics
- Requires timing to exploit
- Crucial capability: survey speed

Pulsar timing

- Binary evolution, GR, EoS
- Gravitational waves
- Crucial capabilities: collecting area, integration time, & cadence

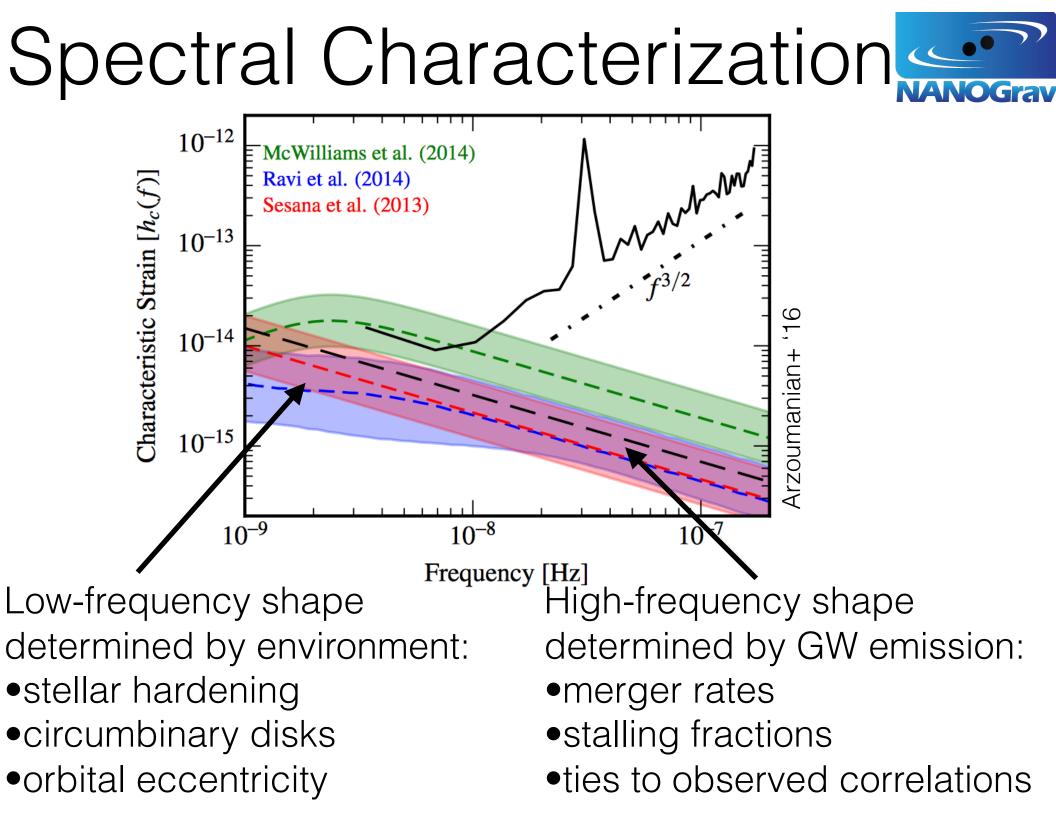
FRB searching

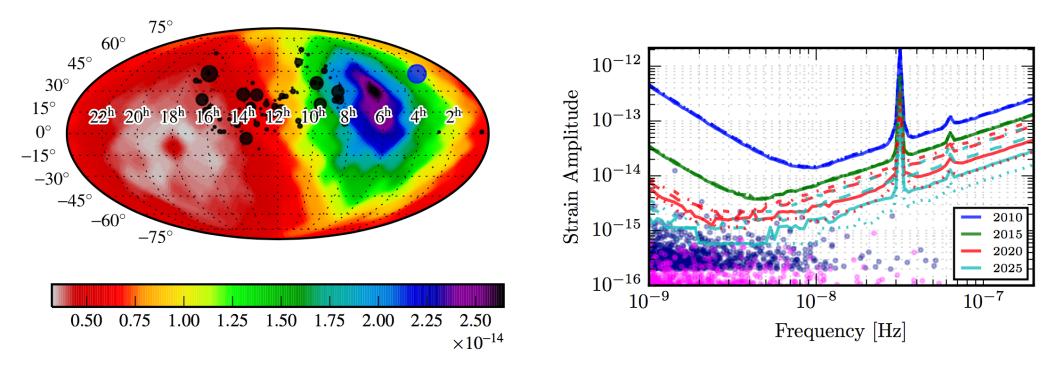
- Numbers for population, logN/logS, spectral diversity, pulse shape, ...
- Crucial capability: FOV


FRB localization

- Precision cosmology, progenitors, microphysics
- Crucial capability: angular resolution

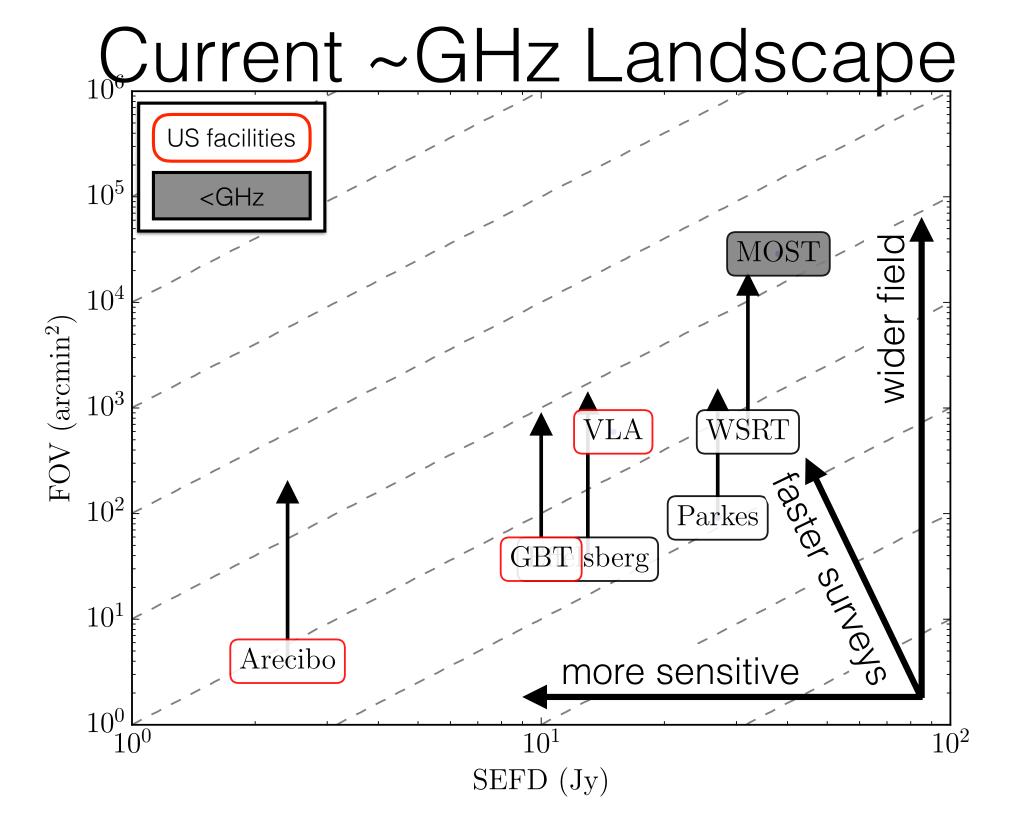
What NANOGrav Can Do

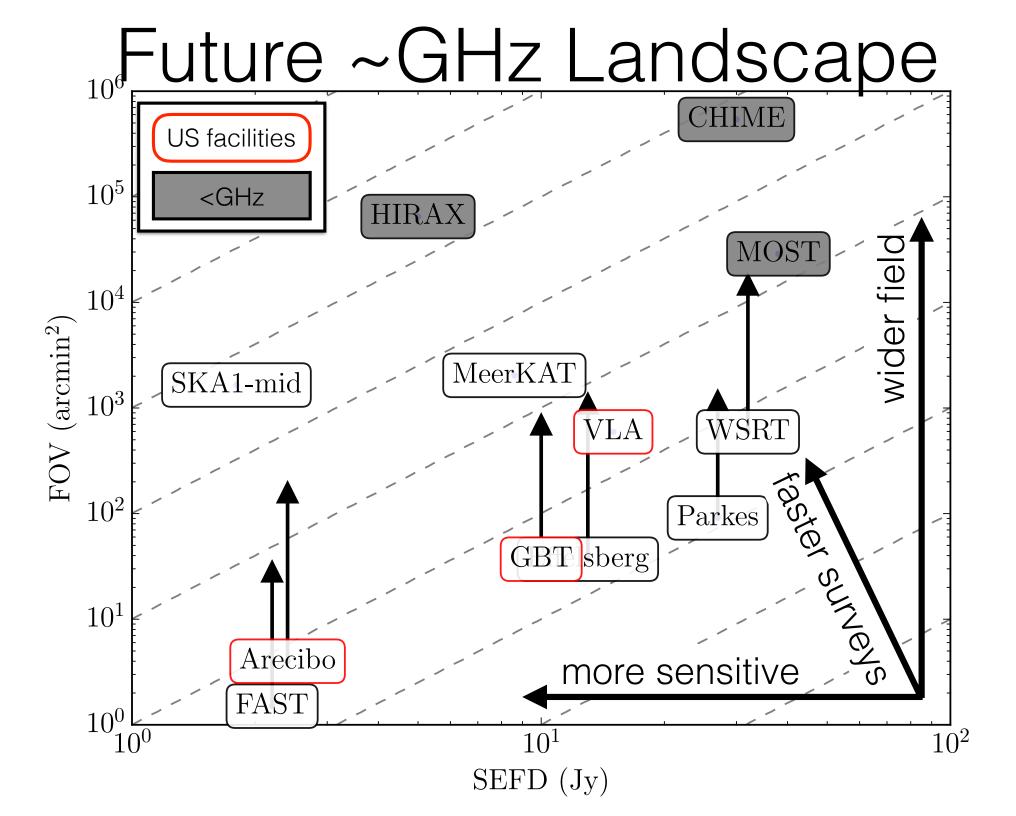

- Soon:
 - Detect stochastic low-frequency GW background
- Eventually:
 - Characterize background:
 - Probe sub-pc environments of supermassive BHs: "spectral shape describes environment"
 - Detect individual SMBH systems, connect with multi-messenger probes

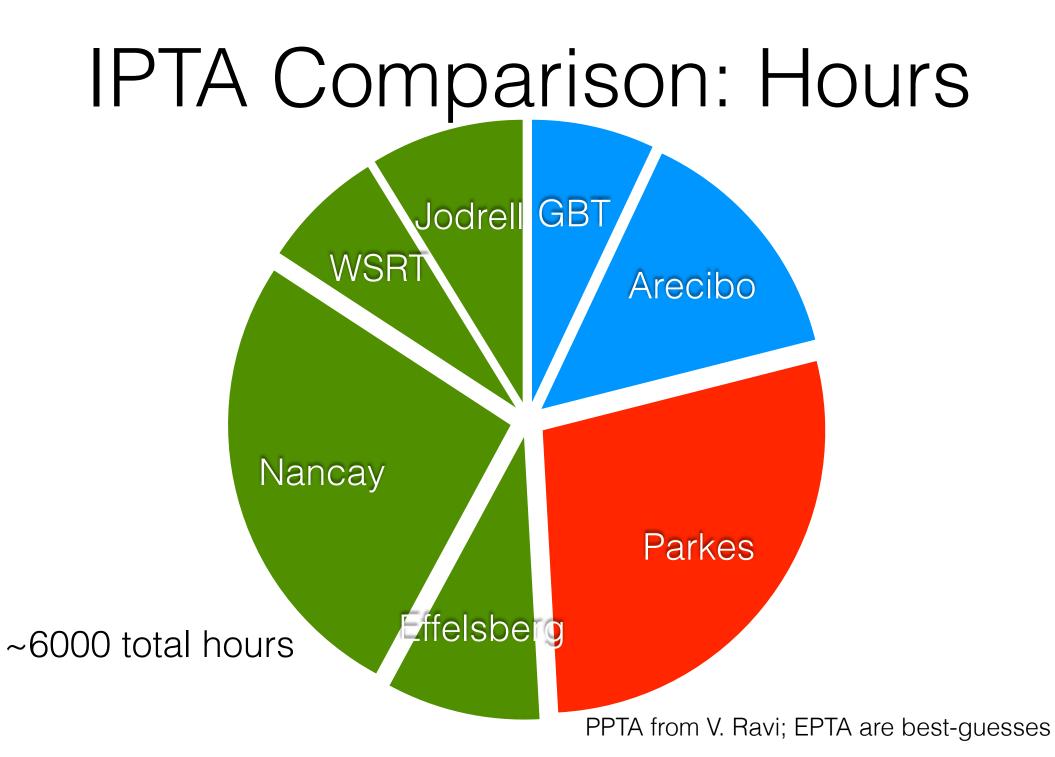

90% chance of detecting the background around the low-middle of expected amplitudes by the end of the 5 years

Even odds of detecting the background at very lowest levels by end of 5 years Having to **profoundly** rethink our understanding of galaxy evolution by end of 5 years

CW Detection Regime

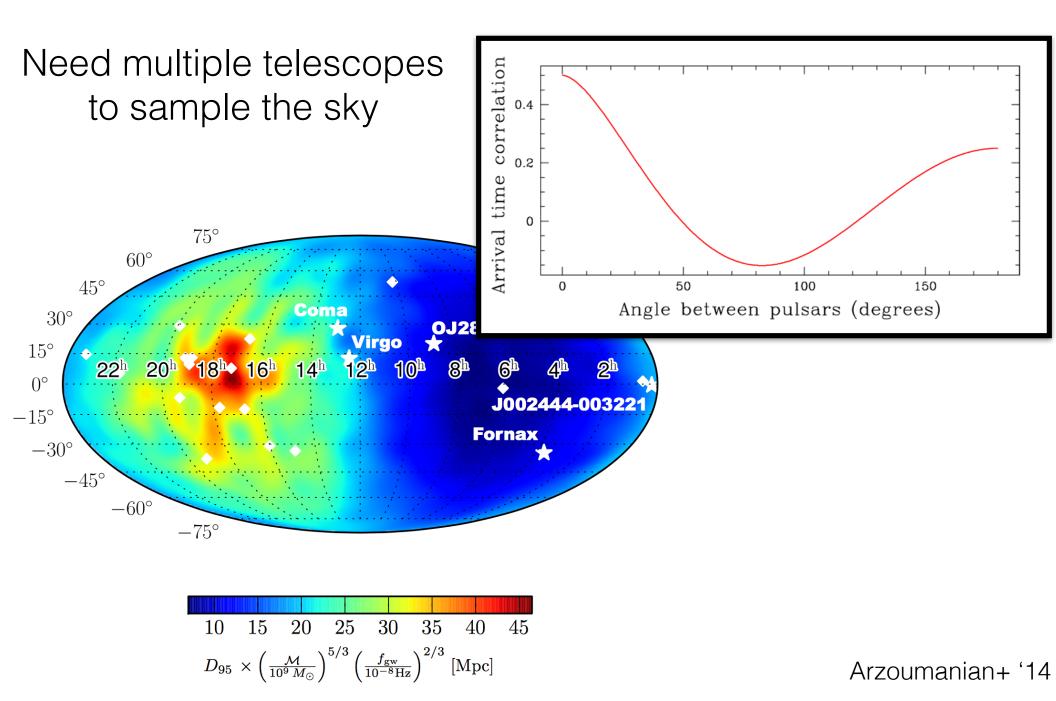



Individual systems visible in GW: connect with optical, radio, X-ray, ...



- More pulsars
- At high cadence
- With sensitive telescopes
- As soon as possible

What are the prospects over the next 10 years?



ParketoB ~15,000 total GBT hours MeerKAT: ~800 total GBT hours Arecibo

Scale by Sensitivity

scale hours by 1/SEFD²: ignores scintillation & jitter

One Isn't Enough

The next 5 years: Arecibo & GBT

- Highest precision pulsar timing requires AO and GBT
 - We **need** continued Arecibo & GBT access
- Current GBT + Arecibo program:
 - 1200 hours/year for NANOGrav timing
 - ~400 hours/year for other timing (double pulsar, triple system, globular clusters, ...)
 - ~600 hours/year of searching (GBNCC, PALFA, ...)
 - Still finding exotic systems and new NANOGrav MSPs
- Can we push this further?
 - 6500 hours/year of timing advances time to detection by several years

The next 5 years

- VLA capable for timing, but oversubscription makes this challenging
 - L-band sensitivity not as good as GBT
 - No 800 MHz capability
 - But very good for higher frequency
 - Searching still not feasible
- FAST and MeerKAT *could* eventually replace Arecibo & GBT in terms of raw sensitivity but
 - Depends on the instrumentation and and observing programs
 - Not enough time available (~400 hours/year for MSP timing: needs to include Parkes pulsars)
 - access for US community far from clear: no obvious open skies policy
 - → Will evaluate MeerKAT and FAST telescopes in this timeframe

The next 5 years: Experiments

- CHIME offers good FRB detection, localization harder
 - Build outriggers? Or better processing?
 - Will contribute to NANOGrav but cannot replace >GHz coverage of GBT or AO
- HIRAX OK for FRB rates; pulsar contribution unclear
- DSA-10: rates are TBC, but really needs full deployment for full impact
- None of these is open-skies for US: but some are US led

The next 5 years: m-waves

- V-LITE/LOBO, LOFAR, LWA, MWA, HERA, ...
 - will help with pulsar searching (LOFAR!)
 - could help with pulsar timing, but quantitative improvement needs to be demonstrated
 - Cannot replace precision GHz timers
 - FRB case not clear: no detections at <800 MHz
 - But low-frequency time-domain explorations worthwhile, relatively cheap

Next 15 years: Paths to Science

- 1. Retain GBT/AO
- 2. Invest in FAST/MeerKAT/SKA1: gain significant share: ~\$5M-\$50M
 - Contribute hardware
 - Contribute complete telescope (\$\$\$)
 - Contribute to data handling capability
- 3. New instrumentation for current facilities (Arecibo, GBT, etc): ~\$10M
 - Ultra-wideband feeds, PAFs, etc.
 - Wide-band or wide area? Depends on the science area
 - Requires continued operations of Arecibo/GBT
 - Could be combined with #2: e.g., new instrumentation for MeerKAT or SKA1 to gain access
- 4. New facilities: >\$100M
 - Pulsar timing array telescope
 - Prototype in ~5 years? Base off existing facilities (CHIME, MOST, MeerKAT)? Integrate with ngVLA?

Options not exclusive. Can pick more than 1!

#1: Retain GBT/AO

- Strengths:
 - Do not need *direct* investment
 - Development largely done
 - Can we increase share on GBT/Arecibo?
 - Even more time will lead to more science: speed up GW background detection significantly
- Weaknesses:
 - How to continue current level of GBT/Arecibo access? Need >1000 hours/ year minimum.
 - Will science pass us by?
 - Support among different constituencies may render our priorities irrelevant

#2: Buy In

- Strengths:
 - Gain meaningful access
 - Development done by others
 - Enhance international partnership and presence
- Weaknesses:
 - Level of investment needed now may be significant
 - Telescopes (FAST, MeerKAT, SKA1) still likely to be highly oversubscribed, may require large collaboration
 - Priorities and programs may be fixed already

#3: New Instrumentation

• Strengths:

- Modest cost (MRI, ATI, etc)
- Leverage significant investment in facilities
- Long track record, retain flexibility
- Do not need to expand user-base
- Can offer as contributions for buy-in of international projects
- Weaknesses:
 - Require continued telescope operations if intended for GBT/Arecibo
 - Still need telescope time

#4: New Facilities

- Strengths:
 - Design telescope(s) to needs
 - Large amount of time would be available
 - May open new capabilities
 - Can offer as contributions for buy-in of international projects
 - Work within ngVLA framework?
- Weanesses:
 - Lots of \$ (MREFC?)
 - Lots of development needed (but this can be good!)
 - Will it satisfy enough US constituencies?

New Facilities

- Develop the concept for pulsar timing array telescope, and/or FRB telescope (DSA? LASA?)
- Challenge of SKA is it's trying to do everything for everyone (=\$\$
 \$)
 - Very capable telescope, but outside the reach of a single country
 - Limited time available for any single project
 - What parameters are essential: think of a concept first and match it to a telescope later
- MeerKAT & ngVLA have most capabilities, but won't have the time available

Simplistic Minimal Requirements

	PSR Search	PSR Time	FRB Search	FRB Localize
Freq Coverage	<2 GHz (exclude GC)	1-10 GHz (most 1-2 GHz)	?	<2 GHz
FOV	deg ²		many deg ²	deg ²
R cadence & duty cycle are key: need ~100 hours/month				
Fully Steerable?		~hour of tracking		
Collecting Area	≈Arecibo	≳Arecibo	?	
Bandwidth		~GHz		

What Would We Build?

- Do not need:
 - high-frequency (coordinate w/ ngVLA?)
 - lots of angular resolution
 - fully steerable (do need ~hour of tracking)
- Need:
 - collecting area
 - FOV
 - Available time
 - Northern hemisphere: maintain NANOGrav pulsars as contribution to IPTA

What Would We Build?

1. Cylinder(s)

- 2. Large-N, small-D dishes
- 3. Small-*N*, large-*D* dishes
- 4. Others

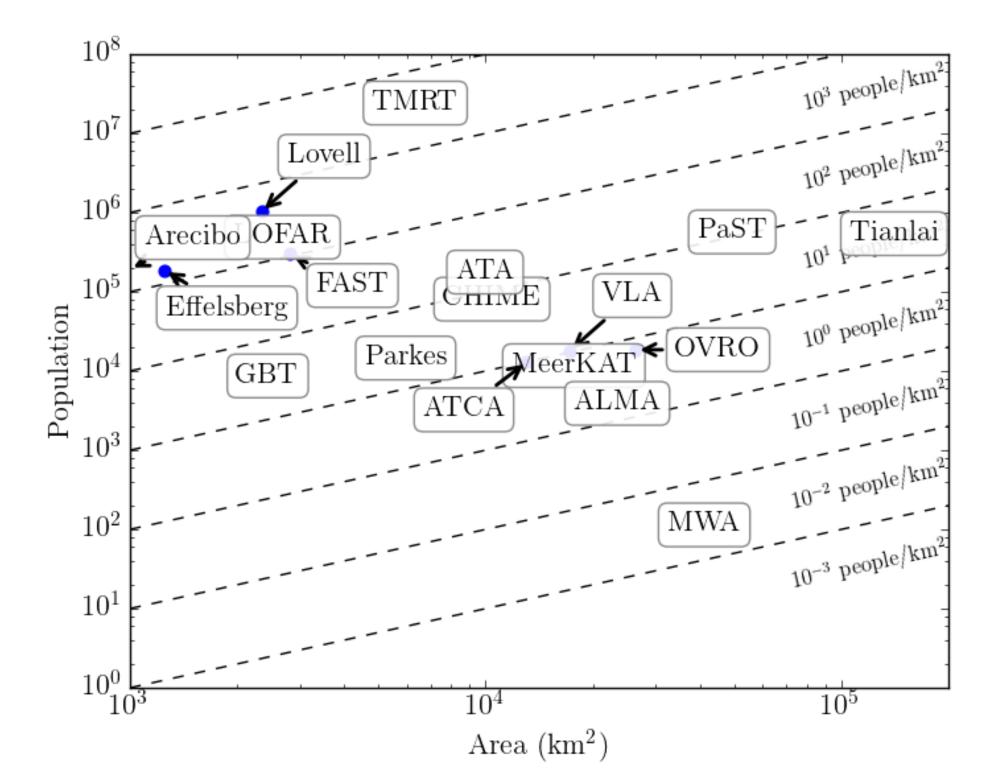
Cylinder(s)

- Build on UTMOST
 - Long tracks at relatively low cost
 - Significant correlator development done
- Localization is 1D without outriggers
 - Add outriggers for arcsec localization, or separate cylinders
- ~4 cylinders would give ~Arecibo of area
 - Can work as subarrays
 - Mesh surface can work up to ~2 GHz
- Keep single uncooled feed design
 - Number will need to scale up with frequency
- Potential sites could take advantage of available infrastructure (GB, VLA, ...), offer additional benefits

The World Is Flat(tening)

- The US still has dominant facilities:
 - VLA, GBT, Arecibo
 - Open skies is a huge contributor to success
- But next generation facilities are moving elsewhere:
 - FAST (China)
 - MeerKAT/SKA (South Africa/Australia)
 - LOFAR (Netherlands)
 - MWA (Australia)
 - CHIME (Canada)
 - HIRAX (South Africa)
 - UTMOST (Australia)

Collaboration & Competition


- International Pulsar Timing Array: great forum for collaboration, but does not generate data on its own
- Individual US Co-Is on next-gen international projects, but no official US presence
- Losing US facilities would hurt US and international efforts (IPTA detection limits worse; even worse after detection)
 - There is not enough time to do all that needs to be done without US facilities
 - SKA: pulsar searching & timing are key projects, but not enough time allocated to realize science potential (and we can do it first!)
- Pulsar Timing Array Telescope:
 - SETI is obvious partner
 - Any others?

Conclusions

- We are at a critical time for pulsars/fast transients:
 - International projects about to take off
 - Gravitational wave astronomy has started, and low-free GW background could be just around the corner
 - Very interesting time in FRBs (Shri has payed out a \$1000 bet)
- The US community needs to invest now, or they will become irrelevant
 - Even staying put takes work and \$\$
- A Pulsar Timing Array Telescope would qualitatively change the field
 - Thousands of hours for new timing and surveys
 - Go from a GW detection experiment to measuring spectrum and identifying sources
- If not, we need to ensure long-term stability through collaboration and targeted upgrades
- Strategic planning meeting Dec or Jan: let me know if you are interested (kaplan@uwm.edu)

Hardware Developments

- FLAG: 19-beam PAF for GBT, cooled, $T_{\rm rec}{<}17~{\rm K}$
- ALPACA: ~40 element PAF for Arecibo
 - Great for pulsar searching, may need to put on GBT
- UWB feeds from ATNF:
 - Great for timing & transients, depends on RFI environment
- UWB @ GBT would give factor of 2 improvement in efficiency
- ATNF RocketPAF (MkIII): T_{rec} < 20K from 600 MHz to 1.5 GHz, goes up to 2 GHz
- ASTRON L-band apperture array for SKA phase 2
- 4-8 GHz PAF from ASTRON
- MPIfR wants a cooled PAF from ATNF
 - S or C band
- CASPER: amazing backends keep improving

Large-N Small-D

- hundreds x 12m dishes, densely packed
 - GBT→Arecibo of area
 - Allows subarrays for flexibility
 - Base on MeerKAT to avoid NRE costs and gain buy-in?
 - Center on VLA: save on infrastructure & function as part of ngVLA?
 - Synergies with DSA for FRB science?
- 2 cooled feeds:
 - 0.8-3 GHz
 - 3-12 GHz
- Or: combine with RocketPAF and use larger dishes?
- More flexible design: primary mission is time-domain science, but other constituencies could contribute required elements

Small-NLarge-D

- few x 70m simple dishes, densely packed
 - GBT→Arecibo of area
 - Cheap mesh surface (or similar) can work up to ~2 GHz
 - Allows subarrays for flexibility
 - Much smaller number of feeds: can connect up to ngVLA frequency range
 - Use PAFs?
 - Backend electronics relatively simple
 - Center on VLA: save on infrastructure?
 - Could also help with 0-spacings if have right receivers

Others: Simplify further?

- Should FRBs dominate design considerations?
 - Could get by with separate facilities (DSA, LASA, HIRAX, CHIME, ...)
- Will MeerKAT/SKA1 find all of the pulsars anyway?
 - Could settle for intermediate steps (just wide-field instrumentation)
- If we drop pulsar searching & FRB populations:
 - FOV requirements much less
 - Would this end up with something different?