
ALMA/NA Development Status

ALMA Future Science Development Program Workshop

A Short Overview Al Wootten

Atacama Large Millimeter/submillimeter Array
Karl G. Jansky Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

ALMA/NA Strategic Goals

- Fifteen years have passed since ALMA specifications were written and construction began
- ALMA now operates at or close to the original requirements
- Cutting-edge technology has advanced tremendously over the past decade and a half
- The community, ALMA Science Advisory Committee and Integrated Science Team have written ALMA2030, an initial framework for developing ALMA to address their scientific vision
- We engage the community to outline a strategy that will enable ALMA to remain at the forefront of astronomical discovery

NRAO)

Goals

- Identify and support community science priorities, identifying critical drivers
- Using community strengths in hardware, software and techniques to fund studies to define and enable a science-driven upgrade plan for ALMA
- Identify those community science priorities which can produce transformational results at the horizon and plan for their realization

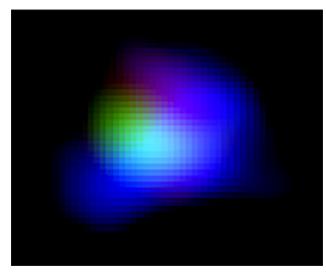
ASAC Recommended Development Paths

- Finish the Scope of ALMA (B1 + B2 receivers, VLB capability)
 - Detailed in ALMA Scientific Specifications and Requirements (ALMA-90.00.00.00-001-B-SPE)
- 1. Improvements to the ALMA Archive: enabling gains in usability and impact for the observatory.
- 2. Larger bandwidths and better receiver sensitivity: enabling gains in speed.
- 3. Longer baselines: enabling qualitatively new science.
- 4. Increasing wide field mapping speed: enabling efficient imaging.

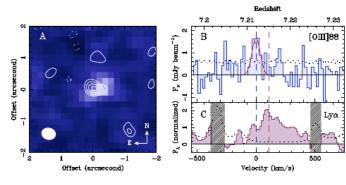
ALMA Science Frontiers

- First Billion Years
- Evolution of Galaxies and Black Holes
- Local galaxies, Milky Way and the ISM
- Star and planet formation, biosignatures, ingredients of habitable worlds—the H₂O trail
- The Sun Exoplanets and the Solar System

NRAO *


Galaxies

Science Drivers

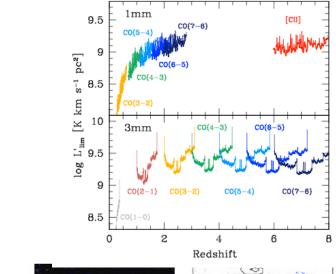

- Creation of the Metals, monitored through atomic and molecular lines
- The first cosmic 'dust'
- These tracers enable characterization of the development of structures in the early Universe

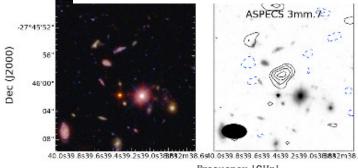
Instrumental needs

- Sensitivity, to detect weak signals
- Spectral grasp, to cover appropriate redshifted lines

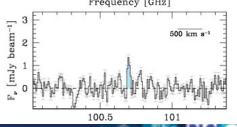
[O III] 88 μ m @z=7.2 in SXDF-NB1006-2 imaged by ALMA (Inoue et al 2016). Blue: Ly α , Red: UV

Evolution of Galaxies and Black

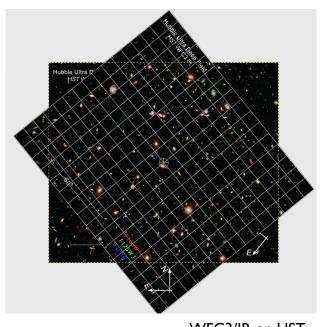

ASPECS Spectral coverage deCarli+ 2016


Science Drivers Holes

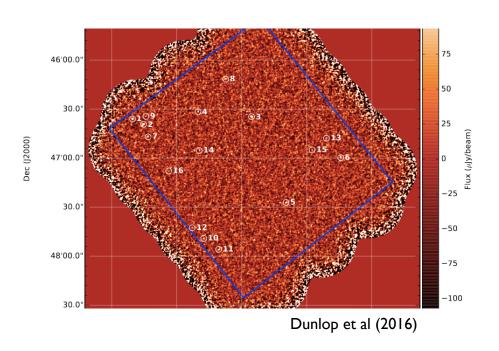
- Kinematics measure of nearby nuclear
 Black Hole mass
- Kinematics characterize galaxies through cosmic time
- Spectra characterize chemical content


Instrumental needs

- Sensitivity: detecting weak signals
- High resolution, probing $R_{galactocentric}$ <50pc regions
- Spectral grasp covers appropriate redshifted lines

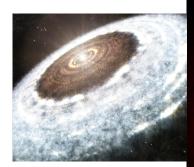


Weakest 3mm ASPECS detection. Walter+, 2016



HUDF – ALMA DF

WFC3/IR on HST


Deep ALMA 1.3mm imaging covering in 45 pointings the full 4.5 sq arcmin of the Hubble Ultra Deep Field (HUDF) reaching 35 microJy, at a resolution of 0.7 arcsec. 16 sources with flux densities S(1.3) > 120 microJy, all with secure galaxy counterparts with robust redshifts ($\langle z \rangle = 2.15$).

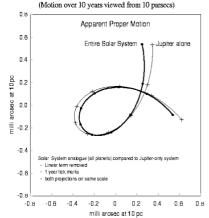
Star & Planet Formation, Ingredients of

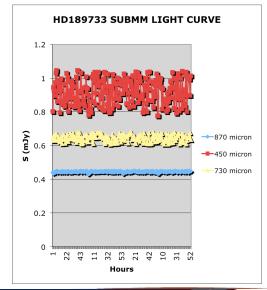
Habitable Worlds

- Disk structure and composition
 - around stars and around planets;
 - disk evolution
- Instrumental needs
 - Sensitivity,
 - Spectral grasp,
 - Spatial and spectral resolution,
 - Imaging precision

V883 Ori, Cieza+ 2016

V883 Ori, Cieza+ 2016




Characterization of Planets

- Characterization of extrasolar planets
 - Astrometry: measuring stellar reflex motions
 - Transit measurements
- Planets at home
- Instrumental needs
 - Sensitivity,
 - Spectral grasp,
 - Spatial resolution,
 - Technique

Reflex Motion for Solar System Analogue in 10 Years

Development Items for ALMA 2010-2030

- Science clearly benefits from improving
 - Throughput (collecting area, instantaneous bandwidth, uv coverage)
 - Spectral Grasp (Expand to all accessible frequencies)
 - Spatial and frequency resolution
- Many other possibilities
 - ASAC ALMA2030 Report
 - Identify science goals development could nourish

ALMA Development

- ALMA Operations included development funds
 - Ramped up to steady-state level by FY2015
 - First priority was to build to unfunded specifications (receiver bands, VLBI)
- ALMA Integrated Science Team working with the ALMA Science Advisory Committee (ASAC), developed PATHWAYS TO DEVELOPING ALMA (ALMA2030)
- Using information gleaned from various sources,
 Pathways informs discussions leading to assembly of a roadmap for ALMA improvements

Development Areas

- Sensitivity--could achieve that of 8 additional antennas with each of
 - Use of additional antennas (near-term)
 - Correlator accuracy (spectral line, near-term)
 - Increased bandwidth, correlator upgrade to 2x or 4x
- Resolution—5millarcsec
 - Imaging disks down to habitable zone scales (continuum). Near 350μm corresponds to 16 km, difficult; at lower frequencies ~20-60km, requires longer baselines
- Field of View
 - Some gains possible with efficiency improvement, On-the-fly
 - Multi-pixel or beam-forming arrays; more important at shorter wavelengths probably

ALMA/NA Strategic Initiatives

- Improving Bandwidth / Sensitivity:
 - Upgrading the baseline correlator
 - Defining the next generation correlator
 - Upgrading the backend to accommodate the upgraded correlator and
 - Upgraded Receivers
- Expediting Data to Publication
 - CASA, pipeline, SRDP software for improving the user data experience (ADMIT, CARTA, data structure explorations)

Opening Spectral Windows

- Building a next generation receiver (2x16GHz) for B2+
- SIS foundry work for high frequency junctions
- Upgrading Band 6, Band 3 to the next generation
- Preparing for Longer Baselines -> Higher Angular Resolution
 - Upgrade of the CLOA (see talk, not yet funded)
- Increasing Imaging Speed
 - Array receivers on a limited part of the array (see talks, not yet funded)

Process

- Through responses to community Calls, ALMA
 partners craft a collection of *Studies* which detail the
 ultimate goals of the ALMA Development Vision
- As a result of Studies, *Projects* may be undertaken to improve capabilities or to realize new capabilities according to the Vision
- Prioritization then leads to a Plan to achieve Vision
- Current goals include
 - Maximizing sensitivity and throughput by increasing bandwidth
 - Completing and upgrading receiver complement to provide that bandwidth

ALMA Development Overview

- ALMA NA Operations comprises NRAO and NRC-HIA but anyone in the NA Operations partnership may participate in Development
- Projects are large efforts, budget ≥\$.2M taking several years, culminating in major new capabilities or improvements
 - Begin with recommendation of ALMA Executive(s), perhaps in response to a Community Call
 - Need approval of ALMA Development Steering Committee, ASAC and recommendation of ALMA Director to ALMA Board
- Studies and small projects are shorter term, lower budget endeavors
 - Normally, Studies are initiated by a Community Call for Ideas
 - May lead to projects, singly or collectively
 - Funding at discretion of ALMA Executives
- Both are guided by a constellation of potential improvements, many listed in a document known as 'ALMA2030'

Progression of ALMA Development Components

ALMA Development Study

Next Gen ALMA Data Viewer

Unleashing Large Dataset Science

ALMA Development Project

CARTA

ALMA Data Mining Toolkit

Implementation/CASA

ADMIT (Sept 2016)

Progression of ALMA Development Components

ALMA Development Study

ALMA B1 Study

Mm/Submm VLB with ALMA

ALMA Development Project

ALMA B1 Project, Construction (EA)

ALMA Phasing Project

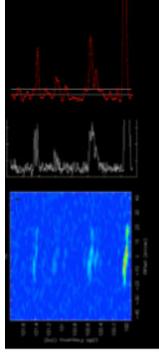
Planned implementation 2019

Cycle 4 VLBI

A ROAD MAP FOR DEVELOPING ALMA

ASAC Recommendations for ALMA 2030

- Finish the Scope of ALMA (B1 + B2 receivers, VLB capability)
 - Detailed in ALMA Scientific Specifications and Requirements (ALMA-90.00.00.00-001-B-SPE)
- Recommended development paths (ASAC)
 - 1. Gains in ALMA usability and impact through improved data access.
 - 2. Larger spectral grasp, better receiver sensitivity enable gain in speed.
 - 3. Longer baselines: enabling qualitatively new science.
 - 4. Increasing wide field mapping speed: enabling efficient mapping.
- What are the NA objectives?
 - Augment ALMA scientific capabilities while benefitting NA goals.
 - E.g. B2 has clear complementarities with ARO, GBT and ngVLA.
 - Next Generation Correlator also has clear complementarities.



Gains in ALMA Usability and Impact

- Enhanced data access and usability
 - Three current NA Projects, one NA, one Eu Study move in this direction via Hardware or Software:
 - AOS-JAO fiber connection (HW: JAO, ESO)
 - Improved connectivity, data flow to ARCs
 - ADMIT data miner (SW: Mundy, PI, U. Md, U. Illinois)
 - Archival spectral line data characterized for all lines
 - CARTA data visualizer (SW: Rosolowsky, PI Alberta)
 - Replaces CASA viewer with enhanced functionality
 - Xclass extensions (SW: Schilke, U. Koln)
 - Provides models of spectral line observations
 - Feature Extraction and Data Cube Visualization through Topology (SW: Rosen, U. S. Florida)
 - New visualization tools for data cubes

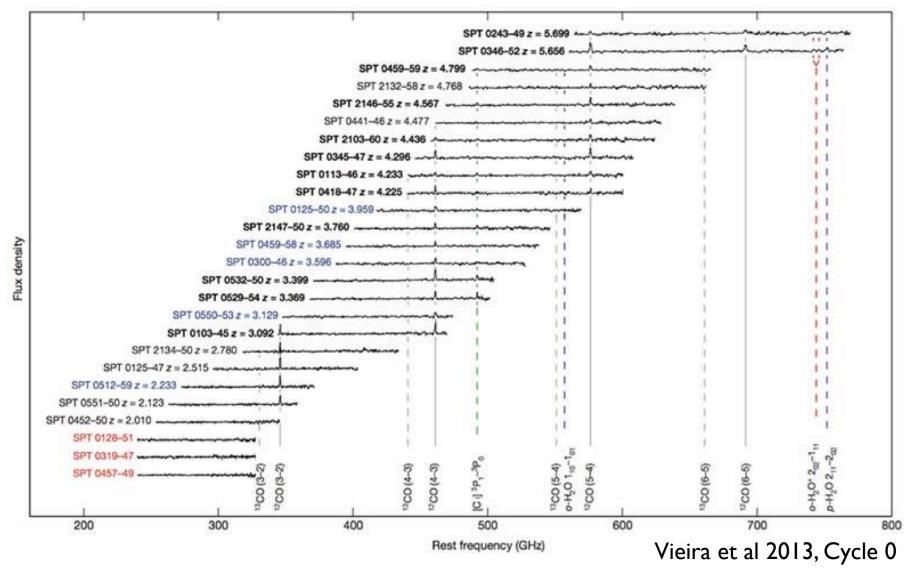
ADMIT line view

Data Usability Tools

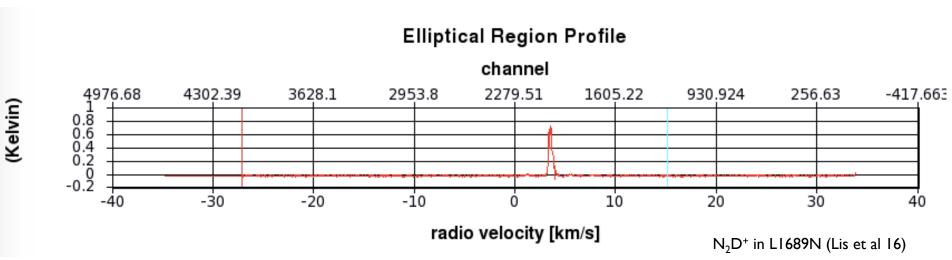
- Several studies increase usability via techniques
 - Community science tool development (T: Leroy, Ohio State)
 - Tool development and repository
 - Calibration Refinements for ALMA Imaging (T: Wilson, NRL)
 - Sought to improve water vapor modeling for ALMA site
 - Improving the Calibration of Atmospheric Spectral Features (T: Hunter, NRAO)
 - Coarse calibration cannot accurately model the atmosphere, which has narrow lines

Increased spectral grasp: Speed gain

- Increased bandwidth, resolution
 - Spectral Resolution/Bandwidth Correlator Upgrade (HW: Lacasse, NRAO)
 - New chips provide 8x channels, 4bit mode, double bandwidth to current correlator
 - Higher continuum, spectral line sensitivity
 - Broader frequency range for redshift or astrochemical searches
 - Velocity resolution improved, important for lower frequencies
 - Digital Correlation and Phased Array Architectures (HW: Weintroub, SAO)
 - New correlator design replaces baseline correlator using modern architecture
 - Develop new digitizers design to improve bandwidth (ESO HW: Baudry, U. Bdx)
 - Signals digitized at receiver; bandwidth improvements on path to correlator
 - GPU spectrometer for TP array (EA HW: KASI)



Increased Bandwidth Importance in Distant Galaxies



Increased Bandwidth: Important for Narrow Lines

- For high resolution, ALMA's current configuration provides 58 MHz spectral windows, only ~70 km/s at 300 GHz.
- With modern chips, one could achieve the same resolution over ~550 km/s, covering another 6 lines.

Increased sensitivity: Speed gain

Receiver Upgrades

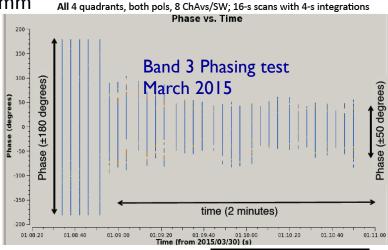
- ALMA Band 1 Production (EA+NA+UCh HW: Kemper, ASIAA)
 - Under way, expected availability on ALMA 2019
- ALMA Band 2 Prototype (NA EA HW: Saini, NRAO)
- Design and components for ALMA B2/3 (EA ESO HW: iALMA, Manchester)
- ALMA B5 Full Production (ESO, NA HW: Chalmers, SRON NRAO)
 - Being installed on ALMA, planned available Cycle 5
- 2nd Generation ALMA Band 6 receiver (HW: Kerr, NRAO)
 - Report available
- Upgrade for ALMA B9 (ESO HW: NL)
 - Prototype to be installed on APEX
- 2nd Generation ALMA Band 10 receiver (HW: Kerr, NRAO)
 - Report available

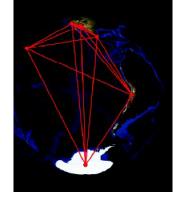
Technological Advances

- Advanced Materials & On-wafer Chip Evaluation (HW: Lichtenberger, U. Va.)
- High Critical Current Density SIS Junction Device Development (EA HW)

Longer Baselines Enable Qualitatively New Science

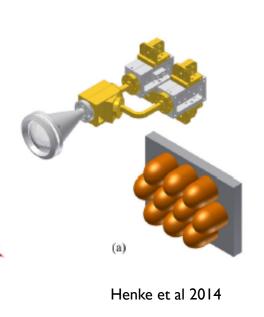
- VLB and connected element arrays
 - ALMA Phasing Project (NA, ESO, EA HW/SW: Doeleman, MIT +)
 - Offered for Cycle 4 (1 Oct 2016=30 Sept 2017)
 - ALMA Phasing System Extensions and Enhancements (HW/SW: Matthews, MIT)
 - Pulsars, Magnetars and Transients with Phased ALMA (SW: Cordes, Cornell)
 - ALMA Extended Array (EA T: Kameno)



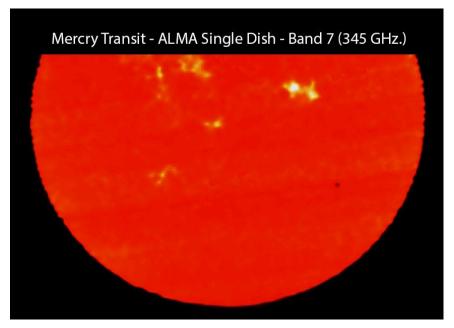

ALMA Phasing Project (APP) (Development Project – NA)

Phase-up ALMA and record the summed signal for mm/sub---mm VLBI:

- Project accepted in 2012, CDR in May 2013
- Hardware Accepted: Dec 2014
 - Includes new extremely accurate Hydrogen maser clock now used throughout ALMA
- Commissioning: Jan-Sept 2015
- Initially only continuum, spectral lines later
 - Key Science: Testing general relativity using the black hole shadow



General relativity predicts that the shadow of a black hole should be circular (middle panel), but a black hole that violates the no-hair theorem could have a prolate (left) or oblate (right) shadow. Future images of nearby supermassive black holes will be able to test this prediction. (figures


Increased Wide Field Imaging Speed

- Array receivers, fast imaging
 - Millimeter Camera (HW: Claude and Henke, NRC-HIA)
 - Solar Observing (NA, ESO, EA T: Bastian, NRAO +)

Asayama 2016

Immediate Future

- NA intends to launch a new Call for Projects
 10 October
 - Overall funding pool is expected to be larger than previously, before Development funding reached its stedystate value
- New Call for Studies also forseen during FY2017
 - Some studies which could not be funded during the current Call may be accommodated, should PIs be able to garner resources, address concerns expressed in reviews

NRAO *

Community Input Meetings

- The Development Vision Working Group will seek advice from throughout the ALMA community
 - Synergy with other large facilities (JWST, LSST, GMST/ELT, Ligo/Virgo/Kagra, FIR Explorer)
 - Seek to inform the vision from discourse with worldwide ALMA partners
- Several community meetings planned

Half a Decade of ALMA: Cosmic Dawns Transformed

- NA Development Study proposals received 2 May; being refereed; additional Call in October
- EU Development Studies Call: May with deadline in September
- EU Workshop on Development: May 25-27, 2016 (Chalmers, Sweden)
- NA Development splinter session at AAS 14 June
- NA rms community workshop 3-5 Aug, Baltimore
- NA Development workshop: 24 August 2016 @NAASC
- September 2016: 'Current and Future Development Activities at ALMA' presentation/panel discussion at the ALMA international conference.

20-23 September 2016, Indian Wells, CA (near Palm Springs) To register and submit an abstract (now open!) visit: http://

go.nrao.edu/ALMA5years

Invited Talks & Speakers

Galaxy Formation and Evolution I: Cosmic Evolution (Caitlin Casey)

Galaxy Formation and Evolution II: Gas & Star Formation Properties (Linda Tacconi) Galactic Centers: Star Formation, AGN, Black Holes & ULIRGs (Masatoshi Imanishi)

Nearby Galaxies I: Normal Galaxies (Karin Sandstrom)

Nearby Galaxies II: Starburst & Super Star Clusters (Kazushi Sakamoto)

Massive Star Formation (Jill Rathborne)

Low Mass Star Formation (Adele Plunkett)

Chemical Evolution During Star and Planet Formation (Jeong-Eun Lee)

Protostellar Disks & Planet Formation (Laura Perez)

Debris Disks (Brenda Matthews)

Stars and Stellar Evolution (Leen Decin)

Solar System (Arielle Moullet)

Synergy between ALMA and JWST (Klaus Pontoppidan)

ALMA after 5 Years (Pierre Cox)

Future ALMA (John Carpenter, Al Wootten, Neal Evans)

Conference Summary (Anneila Sargent)

www.nrao.edu science.nrao.edu

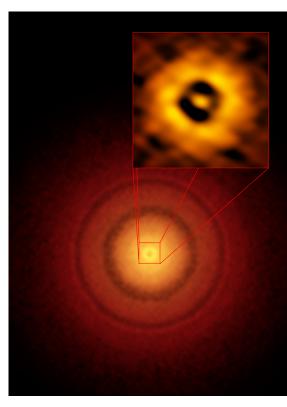
The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Enhancing ALMA

- ALMA is exceptional in
 - Providing submillimeter sky access (a unique interferometer at the highest frequencies).
 - ALMA's resolution is highest in these highest bands
 - Instrumentally, submm observing is a trying task
- High frequency weather is extremely limited (<15% of time concentrated in austral winter)
- One goal could be to enhance access to these exceptional capabilities?

ALMA's Future

- The original specifications and most construction contracts were let ~15 years ago; those specifications are mostly demonstrated
- Technology has advanced tremendously since
- The community is outlining a new vision to extend ALMA science into the future
- ALMA Development funds enable studies which can underpin that vision
 - Studies are available at NAASC Development website, they are open to community participation
 - SACs and science team combined these into a palette of possible upgrades summarized in 'ALMA2030'
 - Community now engaged in transforming these elements and others into a science-driven vision for the next 5-15 years
- ALMA Development Projects fund upgrades to ALMA to achieve that vision, as they have for Bands 1 (35-50GHz) and 5 (163-211GHz), and will for the remaining Bands and other capital investments



(A Few) Science Drivers

- Protostars, protoplanetary disks and their evolution
 - First Galaxies
 - From metal formation in the first stars, to the peak of star formation (sensitivity, spectral grasp)
 - Identification, imaging, composition and kinematics of the first galaxies (sensitivity, resolution, spectral grasp)
 - Particular synergy with large total power instruments
 - Galaxies
 - Probing central masses whether starbursts or black holes
 - Characterizing chemical content and understanding its message
 - Disk composition,
 - around stars and around planets;
 - disk evolution (sensitivity, spectral grasp, resolution, imaging precision)
 - Characterization of planets (sensitivity, resolution)
 - Astrometry: measuring stellar reflex motions
 - Transit measurements (sensitivity, spectral grasp)

TW Hya Andrews et al 2016