ADMIT
ALMA Data Mining Toolkit

Peter Teuben
for:
the ADMIT team

UMD: Lee Mundy (PI), Peter Teuben, Marc Pound, Kevin Rauch
UIUC: Leslie Looney, Doug Friedel, Robert Harris, Lisa Xu
NRAO: Jeff Kern, Tony Remijan, John Hibbard, Mark Lacey

ALMA Future Science Development Program Workshop
Charlottesville, August 25, 2016

http://admit.astro.umd.edu/admit/
ADMIT:
Extract and add interesting science data products to the ALMA archive

• ALMA data delivered as FITS data cubes
 – Typical sizes: 1000 x 1000 x 4000
 – Several spectral windows, polarization

• CASA as base for ADMIT software (cf. ALMA pipeline)
 – Python toolkit (generic)
 – “flow” with reflow (ala “make”) and dependencies
 • AT = ADMIT Task
 • BDP = Basic Data Product (xml wrapper)
A simple ADMIT flow:
cube statistics, spectra, line-id, line-cubes
A simple ADMIT flow: with added continuum subtraction
import admit

Master project.
p = admit.Project('test0.admit', commit=False)

Flow tasks.
t0 = p.addtask(admit.Ingest_AT(basename='x', file='test0.fits'))
t1 = p.addtask(admit.CubeStats_AT((ppp=True), [t0]))
t2 = p.addtask(admit.CubeSum_AT(numsigma=4.0, sigma=99.0), [t0, t1])
t3 = p.addtask(admit.Moment_AT(mom0clip=2.0, numsigma=[3.0]), [t0, t1])
t4 = p.addtask(admit.SFind2D_AT(alias='csm', sigma=2.573442400847707), [t2])
t5 = p.addtask(admit.PVSlice_AT(clip=0.3, pvsmooth=[10, 10], width=5), [t0, t2])
t6 = p.addtask(admit.CubeSpectrum_AT(sources=[0, 1]), [t0, t1, t2, 'csm'])
t7 = p.addtask(admit.PVCorr_AT(), [t5, t1])
t8 = p.addtask(admit.LineSegment_AT(csub=[0, 0], minchan=4, numsigma=5.0), [t6, t1])
t9 = p.addtask(admit.LineID_AT(csub=[0, 0], references='etc/co_lines.list'), [t6,t1,t7])
t10 = p.addtask(admit.LineCube_AT(), [t0, t9])
t11 = p.addtask(admit.Moment_AT(mom0clip=2.0, moments=[0, 1, 2]), [t10, t1])
t12 = p.addtask(admit.CubeSpectrum_AT(), [t10, t11])

Update project.
p.run()
ADMIT in theory
(Pipeline/Archive mode)

Watch this space
ADMIT in practice
(USER/DESKTOP mode)

% runa1 test0.fits
% casa

In a terminal:
...
> import admit
> a = admit.Project('test0.admit', dataserver=True)

Watch your default browser:
ADMIT in practice
(USER mode)

Watch your default browser:

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task Name</th>
<th>Parameters</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ingest_AT</td>
<td>file=x.fits, mask=True</td>
<td>✔</td>
</tr>
<tr>
<td>1</td>
<td>CubeStats_AT</td>
<td>robust=medabsdevmed, ppp=True</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>CubeSum_AT</td>
<td>numsigma=4.0, sigma=0.0013133, smooth=[]</td>
<td>✔</td>
</tr>
<tr>
<td>3</td>
<td>SFind2D_AT</td>
<td>nsigma=6.0, sigma=2.57344, region=robust=[hin'-15], snmax=35.0</td>
<td>✔</td>
</tr>
</tbody>
</table>
| 4 | CubeSpectrum_AT | pos=[(68, 63), (69, 63), (10h27m51.227s, '-43d54m18.444s'), (10h27m50.243s, '-43d54m24.366s)] | x.im | ✔
| 5 | LineSegment_AT | numsigma=5.0, minchan=4, maxgap=3, segment=ADMIT, smooth=[] | ✔ | |
| 6 | PVSlice_AT | slice=['6.00', '51.28', '121.00', '73.02'], width=5 | ✔ |
| 7 | PVCorr_AT | numsigma=3.0, range=['16', '32'] | ✔ |
| 8 | LineID_AT | numsigma=5.0, minchan=4, maxgap=3, recarb=shallow, smooth=[], tier1width=0.0, csub=[0], iterate=True | ✔ |
| 9 | LineCube_AT | pad=5, equalize=False | ✔ |
| 10 | Moment_AT | moments=[0, 1, 2], numsigma=[2.0], mom0=clip=2, chans=all, x:CO_115.27120 | ✔ |
| 11 | CubeSpectrum_AT | pos=[(68, 63)] | x.CO_115.27120 | ✔ |
| 12 | Moment_AT | moments=[0], numsigma=[3.0], mom0=clip=2, chans=all, x@1.mom | ✔ |
ADMIT in practice
(USER mode)

CubeStats_AT computes image-plane robust statistics on datacubes. These statistics are particularly useful for identifying spectral lines in images where the noise varies as a function of frequency.

<table>
<thead>
<tr>
<th>CASA image</th>
<th>x.im</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS method</td>
<td>medabsdevmed</td>
</tr>
<tr>
<td>RMS value</td>
<td>1.131E-03</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>1.361E+03</td>
</tr>
<tr>
<td>Data mean</td>
<td>8.325E-04</td>
</tr>
</tbody>
</table>

Emission characteristics as a function of channel, as derived by CubeStats_AT (cyan: global rms, green: noise per channel, blue: peak value per channel, red: peak/noise per channel).

Peak point plot: Locations of per-channel peaks in the image cube x.im
ADMIT in practice
(USER mode)
ADMIT in practice
(USER mode)

ADMIT Task Inputs for test0.admit

Parameters

Input BDPs

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CubeSpectrum_BDP</td>
<td>x.csp</td>
</tr>
<tr>
<td>1</td>
<td>CubeStats_BDP</td>
<td>x.cat</td>
</tr>
<tr>
<td>2</td>
<td>PVCorr_BDP</td>
<td>x.pvc</td>
</tr>
</tbody>
</table>

Output BDPs

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LineList_BDP</td>
<td>x.l</td>
</tr>
</tbody>
</table>

Keywords

- **numsigma**: 5.0
- **force**: 0
- **tier1width**: 0.0
- **online**: False
ADMIT in practice

USER mode

ADMIT Task Inputs for test0.admit

<table>
<thead>
<tr>
<th>muncnan</th>
<th>pattern</th>
<th>smooth</th>
<th>recalcnoise</th>
<th>vlsr</th>
<th>maxgap</th>
<th>reject</th>
<th>method</th>
<th>mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>AUTO</td>
<td></td>
<td>False</td>
<td>-999999.99</td>
<td>3</td>
<td>[]</td>
<td>('PeakFinder': {'thresh': 0.0})</td>
<td>ONE</td>
</tr>
</tbody>
</table>

Task IDs

- LineCube_AT (taskid=9)
- Moment_AT (taskid=10)
- CubeSpectrum_AT (taskid=11)
- Moment_AT (taskid=12)

[Update ADMIT flow state (dry run)]

[Re-run ADMIT flow]
ADMIT in practice (USER mode)

Moment_AT creates moment maps using custom clip levels.

Moment_AT output for x.CO_115.27120/lc.im

- [Carbon Monoxide Moment 0 map of Source NGC3256](View in CASA)
- [Carbon Monoxide Moment 1 map of Source NGC3256](View in CASA)
ADMIT in practice – mode 2
(USER mode using file browser)
Random Notes

- Lack of VLSR in FITS header (where useful)
- Continuum subtraction not always done
- lustre FS unstable for nautilus (dolphin ok)
- Firefox threading/signal bug (no chrome @ NRAO)
- Manual pipeline line-free channels shortage
- New CASA code (robust stats)
- Old CASA shakedown
LineID without any priors?

- Missing priors:
 - VLSR
 - Simbad/NED(object) [vlsr.tab cheat]
 - VLSRc = RESTFREQ vs. centerfreq
 - VLSRf = RESTFREQ vs. linefreq (high-z cheaters)
 - Object Type (e.g. galaxy, high-z, hot core, outflow)
 - cf. splatalogue’s “Astronomical Filters”
CubeStats (AT and BDP)
Feedback to imaging?

- **CubeStats_AT**: \(\text{rms(channel)} \) plot
 - Aliasing/periodic tick (up/down) in RMS (v-grid)
 - Periodic variations
 - Edge channel (begin or end?) - v-grid?
 - Crazy variations
CubeStats (AT and BDP)
LineID without any priors?

• Missing priors:

 – VLSR
 • Simbad/NED(object) [vlsr.tab cheat]
 • VLSRc = RESTFREQ vs. centerfreq
 • VLSRf = RESTFREQ vs. linefreq

 – Object Type (e.g. galaxy, high-z, hot core, outflow)
 • cf. Splatalogue’s “Astronomical Filters”
Timeline

• 2013-2014 ALMA Development Study (astute)
• May 1, 2016: ADMIT 1.0 (UMD/UIUC)
• Oct 1, 2016: ADMIT 1.1 (UMD/NRAO)
• ??? : ADMIT 2.0

http://admit.astro.umd.edu/admit/