VLA Data Reduction Techniques II Calibration

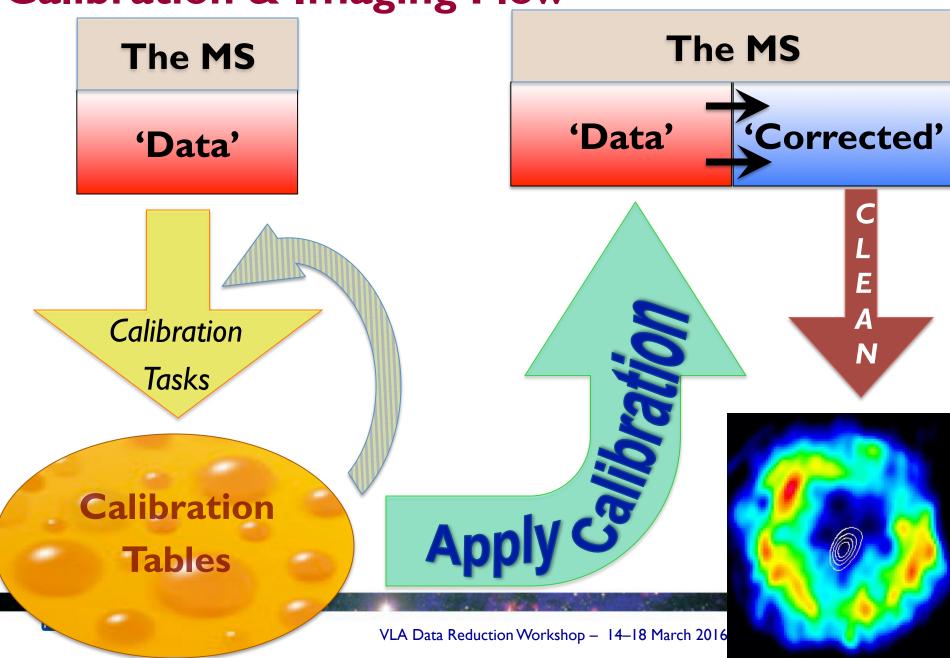
Emmanuel Momjian NRAO

The MS structure

'Data' column

'Corrected' Column

'Model' Column (optional) FT of source model


Raw Data

Calibrated Data

• When you load your data from the archive, your MS will only have the 'Data' column.

- The other two columns can be created by various means.
- The creation of the other two columns \rightarrow MS tripling in size.
- The 'Model' Column is optional.
 - If not created → MS doubling in size.
 - Models can be "attached" to the MS, FT-ed and used when needed (replacing the need for the 'Model' column).

Calibration & Imaging Flow

Calibration

- Correcting antenna positions
- Gain Curves
- Opacity (HF) and Ionospheric (LF) corrections
- Requantizer gain calibration
- Setting the flux density scale
- Delay calibration
- Initial Phase only calibration (HF)
- Bandpass calibration
- Complex gain calibration
- Polarization Calibration
- Setting the flux scales of the secondary calibrators

Prior Calibration

gencal

gencal is a task for various types of corrections:

```
'amp'= amplitude correction
'ph' = phase correction
'sbd'= single-band delay
'mbd'= multi-band delay
'antpos' = ITRF antenna position corrections
'antposvla' = VLA-centric antenna pos. corrections
'swpow' = EVLA switched-power gains
'rq' = EVLA requantizer gains
'swp/rg' = EVLA switched power gains/req. gains
'opac' = Tropospheric opacity
'gc' = Gain curve (zenith-angle-dependent gain)
'eff' = Antenna efficiency (sqrt(K/Jy))
'qceff' = Gain curve and efficiency
'tecim' = Total electron content for ionospheric
         corrections
```

Antenna Positions: gencal

- Check the operator's log to see if any antennas were recently moved.
- Use the task gencal to produce a calibration table that will include the antenna position corrections

```
caltype = 'antpos'
caltable = 'antpos.cal'
```

Baseline correction related information is at:

http://www.vla.nrao.edu/astro/archive/baselines/

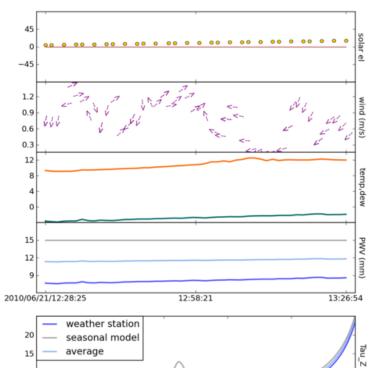
Gain Curves: gencal

- Large antennas have a forward gain that changes with elevation.
- Gain curves describe how each antenna behaves as a function of elevation, for each receiver band.
- The polynomial coefficients for the VLA are available directly from the CASA data repository.
- Especially important for higher frequencies.
- In gencal, set

```
caltype = 'gc'
caltable = 'gaincurve.cal'
```


Opacity Corrections (HF): plotweather

- Atmospheric optical depth corrections.
- Important for high frequency observations (>15 GHz).


• Plotweather is the task to estimate opacities and to

make weather plots.

Uses weather statistics and/or seasonal models.

- tau_val=plotweather(vis
 ='my.ms',doPlot=T)
- Gives one value per spw

Frequency (GHz)

Opacity Corrections (HF): gencal

 After plotweather use gencal to make a calibration table using the derived opacities:

```
caltype = 'opac'
caltable = 'opacity.cal'
parameter = tau_val
spw = 'match it to tau_val's'
```


Ionosphere Correction: gencal

Needed for lower frequency observations (P, L, and S-bands)

- Important for polarimetry
- Under testing
- 1) Import the TEC image

```
from recipes import tec_maps
tec_image, tec_rms_image =
  tec_maps.create(vis='my.ms',doplot=True)
```

2) Run gencal

```
caltype = 'tecim'
caltable = 'tecim.cal'
infile = tec_image
```

Requantizer gains: gencal

- Optimizes the digital power within each spectral window.
- Required for 3-bit data.
- Strongly recommended for P-band 8-bit data.
- In gencal, set

```
caltype = 'rq'
caltable = 'requant_gains.cal'
```


Setting the flux density scale: setjy

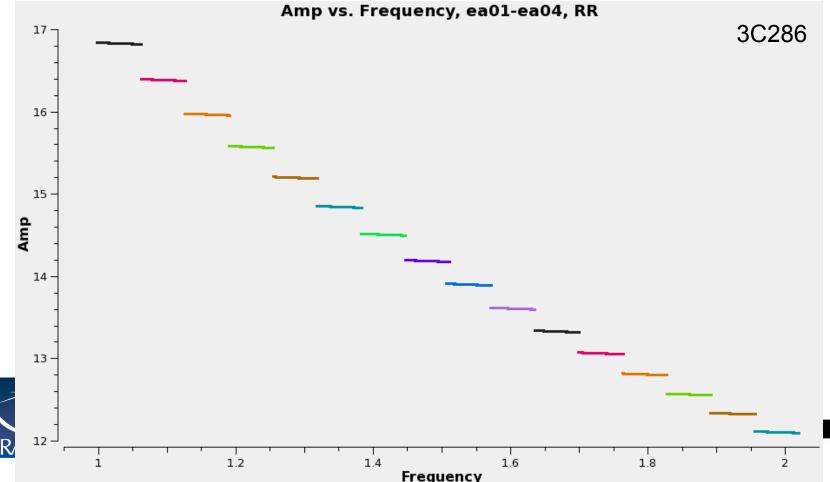
- Calculates the absolute flux density as a function of frequency (and time):
 - for standard flux density calibrators (e.g., Perley-Butler 2013)
 - and for Solar System objects (e.g., Butler-JPL-Horizons 2012)
- If provided, attaches a model record to the MS

Setting the flux density scale: setjy

- Calculates the absolute flux density as a function of frequency (and time):
 - for standard flux density calibrators (e.g., Perley-Butler 2013)
 - and for Solar System objects (e.g., Butler-JPL-Horizons 2012)
- If provided, attaches a model record to the MS

Calibration: setjy

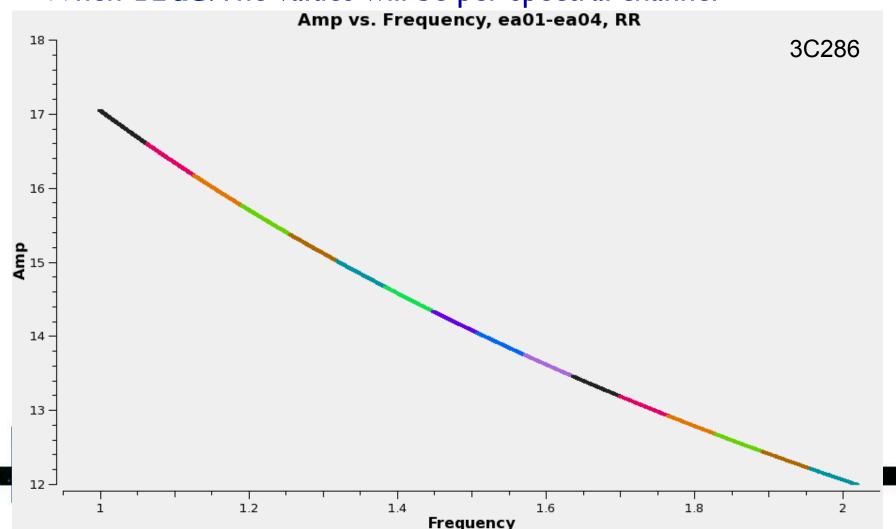
- listmodels
 - If True, the task will only list the available primary calibrator models (3C138, 3C147, 3C286, 3C48; at L, S, C, X, U, K, A, Q bands).
 - If False, the task will calculate the flux density.
- usescratch
 - If True, the 'Model' column will be created. This will increase the size of the MS.
 - If False, the model is simply attached to the MS. When needed, it will be FT-ed and used.


Setting the flux density scale: setjy

- Calculates the absolute flux density as a function of frequency (and time):
 - for standard flux density calibrators (e.g., Perley-Butler 2013)
 - and for Solar System objects (e.g., Butler-JPL-Horizons 2012)
- If provided, attaches a model record to the MS

Calibration: setjy

The scalebychan parameter


- When False: The values will be per spectral window.
- Do not set it to False!

Calibration: setjy

The scalebychan parameter

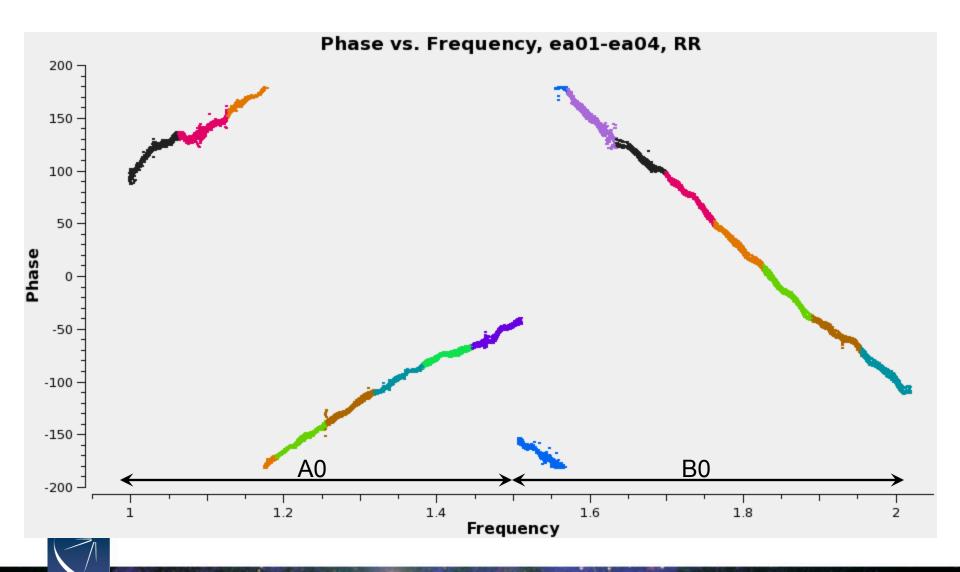
When True: The values will be per spectral channel

Setting the flux density scale: setjy

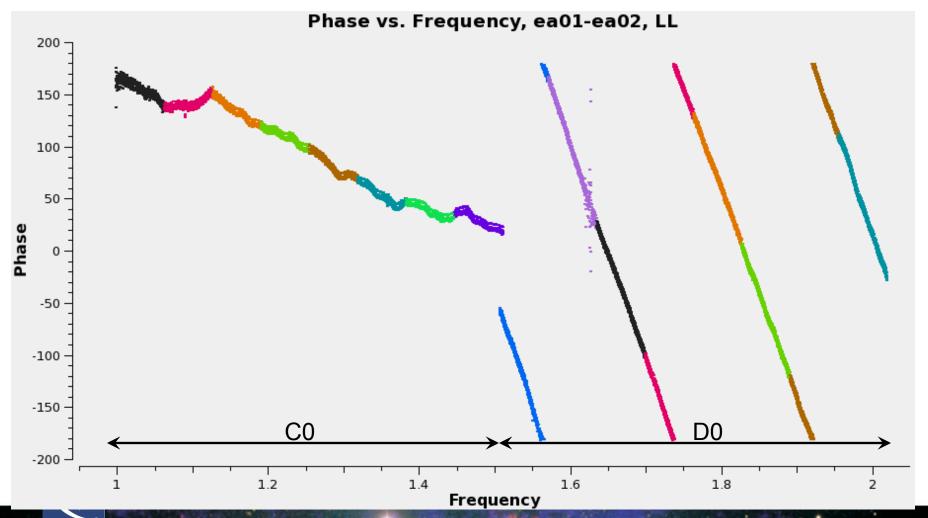
 User can also provide flux density values instead of letting the task calculate them (manual mode)

```
standard = 'manual'
fluxdensity = [1, 0, 0, 0]
spix = [alpha,beta]
reffreq = '1GHz'
```

Can also provide


```
polindex: coefficients for linear pol. fraction expression
```

polangle: coefficients for pol. angle expression


rotmeas: rotation measure

Delays

NRAO

Delays

Delay Calibration: gaincal

```
vis = 'my.ms'
caltable = 'delays.cal'
field = '?'
solint = '60s'
refant = 'ea??'
gaintype = 'K'
gaintable = 'previous cal tables'
```

- Choose I min of data on a strong source (through selectdata

 timerange).
- refant should have baselines to all the antennas in the selected time range.
- This is not a Global Fringe Fitting; it solves for antenna based single-band delays or multi-band delays.

A note on the new parameter docallib

In CASA version 4.5.2, make sure

docallib = False

- docallib refers to a "calibration library", a new portable interface for describing ensembles of calibration replacing gaintable, gainfield, etc... parameters.
- Will enable on-the-fly calibration in various tasks.
- Will provide increased capability and flexibility.
- Can be used now but remains limited in some aspects.
- New features, additional flexibility, and broader deployment in more tasks will be offered in CASA 4.6 and later releases.

Before Bandpass Calibration

- Bandpass calibration is not only needed for spectralline observations, but also for continuum.
- Before calibrating the bandpass, do phase-only calibration on the bandpass calibrator (to be applied when calibrating the bandpass).
 - Prevents decorrelation when vector averaging.
 - Critical for high frequency observations.
 - Can also be used in low frequency observations.

Initial Phase only calibration: gaincal

- Run gaincal on the bandpass calibrator using:
 - -a short solution interval, and
 - -a few channels per spw (free of RFI).
- This table should only be used while calibrating the bandpass.
- In gaincal, set

```
-caltable ='bpphase.gcal'
-field ='bandpass_cal_field_name_or_#'
-calmode ='p'
-gaintype ='G'
-gaintable ='various calibration tables'
-solint ='a short time interval'
-spw ='x~y:n~m'
```

Initial Phase only calibration Plotting the solutions: plotcal

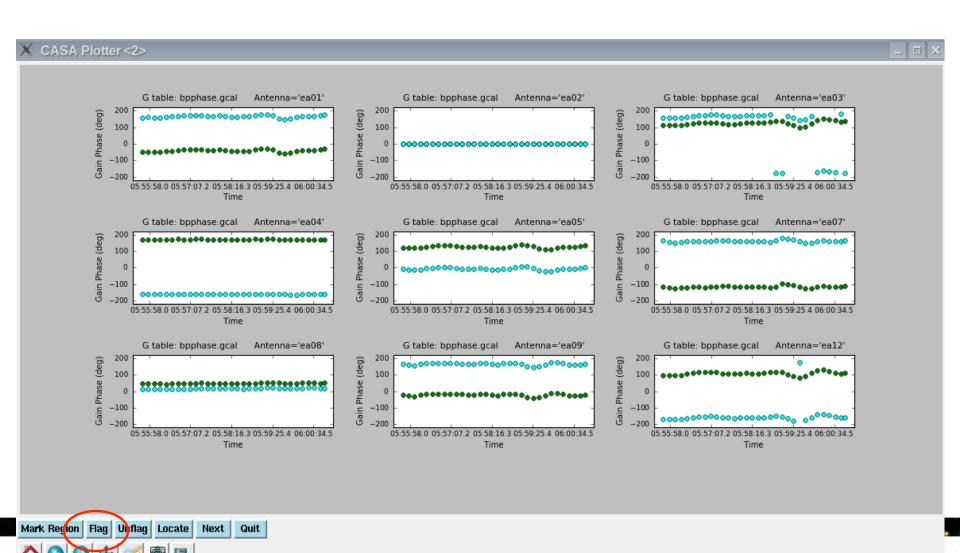
- plotcal is a multi-purpose plotter (editor) for calibration results
- To plot the phase calibration results:

```
caltable = 'bpphase.gcal'

xaxis = 'time'

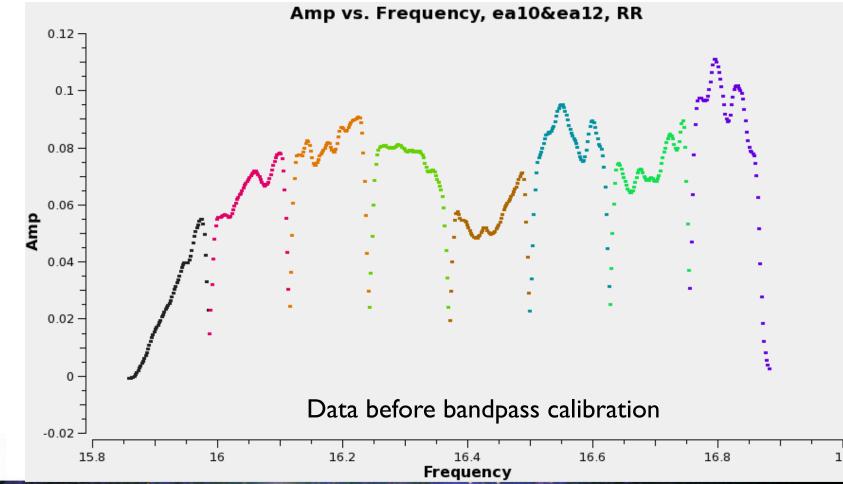
yaxis = 'phase'

spw = '1'

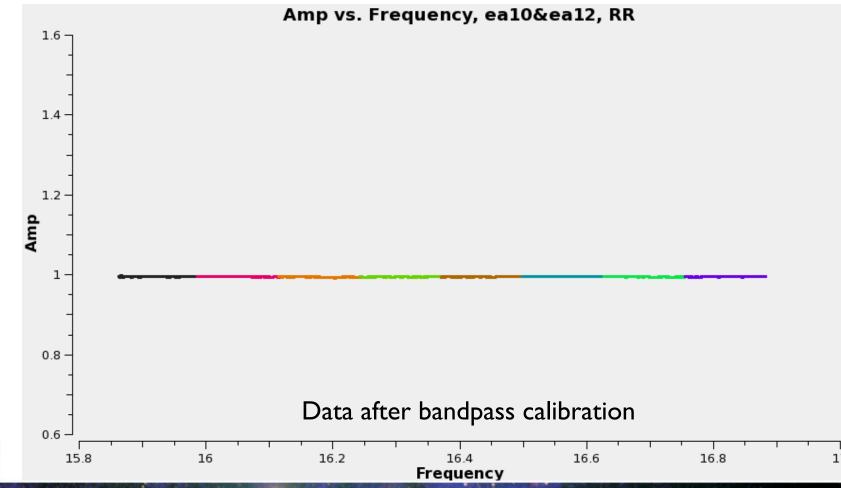

subplot = 331

iteration = 'antenna'

plotrange = [0, 0, -200, 200]
```



Initial Phase only calibration Plotting the solutions: plotcal


Bandpass Calibration: bandpass

Needed for continuum observations too.

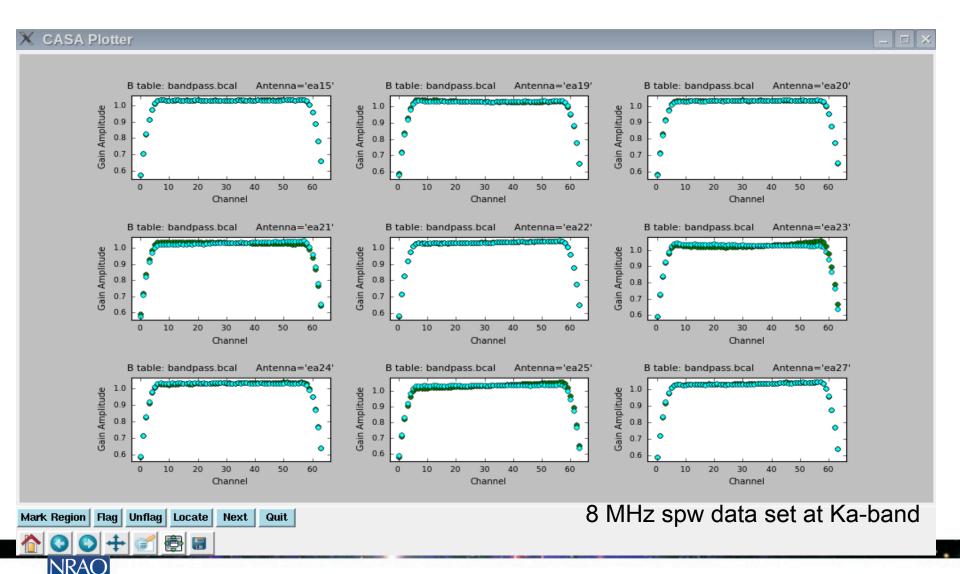
Bandpass Calibration: bandpass

Needed for continuum observations too.

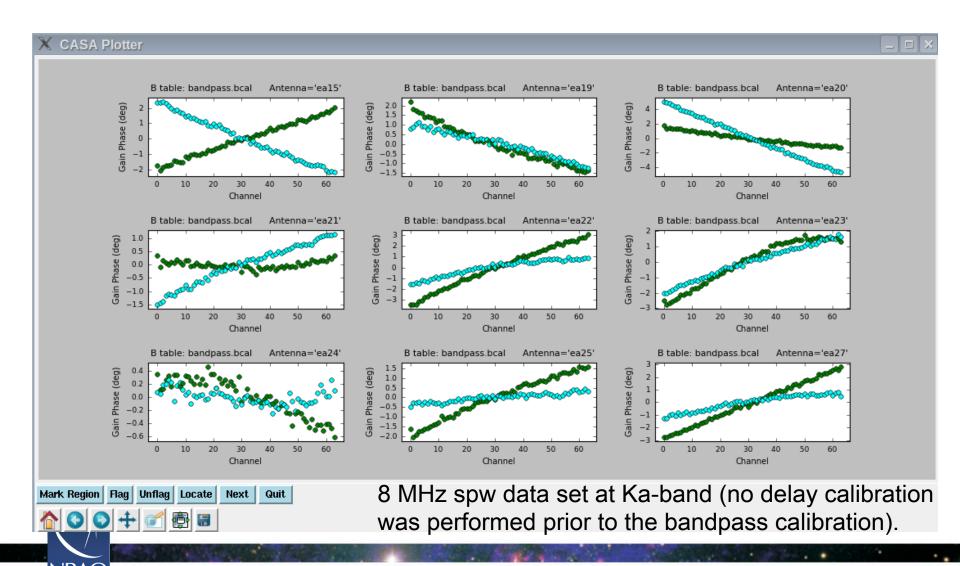
Bandpass Calibration: bandpass

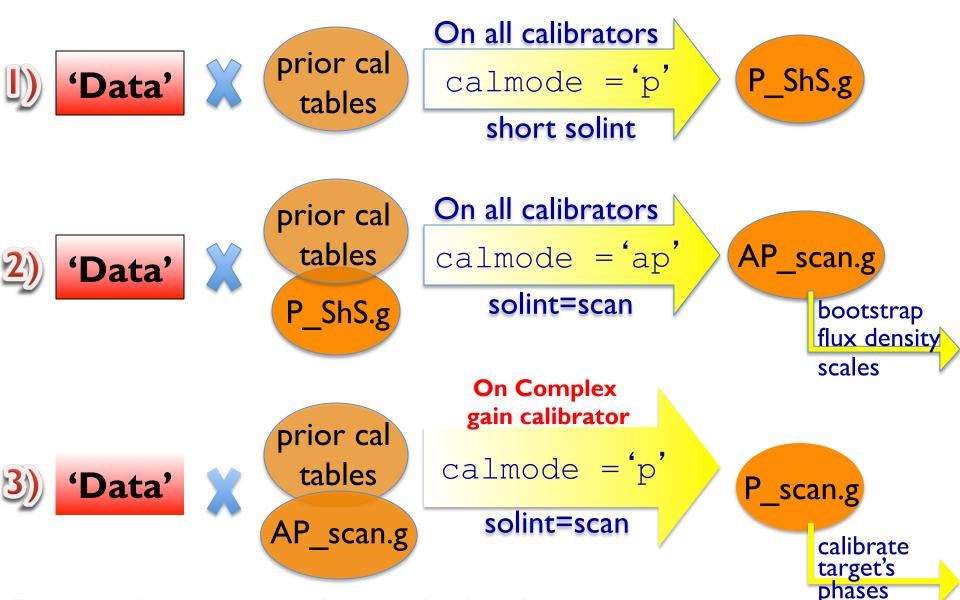
```
'bandpass.bcal'
caltable
                               '? '
field
                                   [time and optionally frequency]
solint
                               'ea??'
refant
                               False
solnorm
                                        BPOLY
bandtype
                               B
                                   or
                       = various calibration tables
gaintable
```

- If using a source other than the flux calibrator, the spectral index (and the spectral curvature) should be accounted for.
- CASA will report these while bootstrapping the flux densities, and store the numbers in a dictionary.

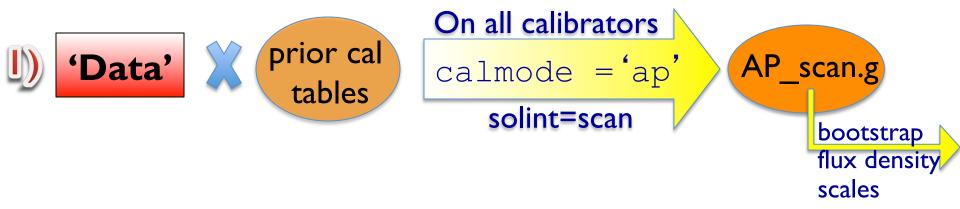

Use setjy to make use of these values.

Bandpass Calibration Plotting the solutions: *plotcal*


```
caltable = 'bandpass.bcal'
xaxis = 'chan'
yaxis = 'amp' or 'phase'
spw = '1'
subplot = 331
iteration = 'antenna'
```



Bandpass Calibration Plotting the solutions: *plotcal*

Bandpass Calibration Plotting the solutions: *plotcal*



Complex Gain Calibration: gaincal, High Freq

Examine the resulting tables with plotcal

Complex Gain Calibration: gaincal, Low Freq

- Examine the resulting table with plotcal.
- If the phases show rapid variations (e.g., due to ionosphere), use the method outlined for high frequencies.
- The VLA calibration pipeline uses the HF approach.

Polarization Calibration

- Gaincal
 - solving for the cross-hand delays
- Polcal
 - solving for the leakage terms
 - 2. solving for the R-L polarization position angle
- For VLA observations, and particularly for wide bandwidth observations: have channel based solutions for the leakage terms and for the R-L polarization position angle.
- > Both CASA and AIPS allow solving for these per spectral channel.

Polarization Calibration: gaincal

- For polarization calibration, you will typically observe
 - A source to calibrate the leakage terms (this can be a polarized or an unpolarized source), and
 - A source with very well known polarization characteristics to calibrate the polarization position angle.
- Before running polcal, calibrate the cross hand delays (critical if your leakage calibrator is polarized):
 - Use the (polarized) position angle calibrator (use setjy to provide its Q and U values).
 - Run gaincal with gaintype = 'KCROSS'
 - Examine the resulting table with plotcal.

Apply the resulting table in subsequent steps.

Polarization Calibration: polcal 1. Solving for the leakage (D) terms (instrumental pol.)

- \triangleright For an unpolarized calibrator (Q=U=0):
 - Use poltype = 'Df' to solve for the leakage terms (D)
 on per channel (f) basis.
 - Single scan
- For a polarized calibrator with unknown polarization:
 - Use poltype = 'Df+QU' to solve for channel base leakage terms & apparent source polarization.
 - Several scans, and a good parallactic angle coverage

Examine the resulting tables with plotcal.

Polarization Calibration: polcal 2. Solving for the R-L polarization position angle

- To obtain an accurate polarization position angle, the R-L phase needs to be calibrated.
- In polcal, use poltype = 'Xf' for a frequency dependent polarization position angle calibration.
- Requires the use of a (polarized) source with known polarization angle (use setjy to set its Q and U values).
- Examine the resulting table with plotcal.

Scale flux density: fluxscale

- Bootstraps the flux density scale of the secondary calibrators.
- Uses the scan based 'ap' gain table AP_scan.g

```
vis = 'my.ms'
caltable = 'input ap table'
reference = 'field # of the flux cal'
fitorder = 1 or 2
fluxtable = 'output table'
incremental = True or False
```

- Reports the flux density values per calibrator per spw.
- Fits across the spw's of each calibrator to report a spectral index and curvature (can be supplied through setjy if needed).

Scale flux density: fluxscale

- Bootstraps the flux density scale of the secondary calibrators.
- Uses the scan based 'ap' gain table AP_scan.g

```
vis = 'my.ms'
caltable = 'input ap table'
reference = 'field # of the flux cal'
fitorder = 1 or 2
fluxtable = 'output table'
incremental = True or False
```

- Reports the flux density values per calibrator per spw.
- Fits across the spw's of each calibrator to report a spectral index and curvature (can be supplied through setjy if needed).

Scale flux density: fluxscale

```
fluxtable = 'output table'
incremental = T or F
```

If incremental = F
 The output table replaces the input 'ap' table.

If incremental = T
 The output table contains only the scaling factors, and should be used alongside the input 'ap' table.

Apply Calibration: applycal

- One field at a time, but targets with the same calibrators can be grouped together.
- Use the appropriate tables for each source.
- Make sure to match the gainfield entries with the gaintables.
- calwt can also be a list, with each element corresponding to a calibration table. Make sure it is not an empty list.

Examine the calibrated data (the corrected column) with plotms.

Flag, if needed, and re-calibrate.

The VLA Calibration Pipeline

- Performs basic flagging and calibration using CASA.
- Primarily designed for Stokes I continuum data.
- To run successfully, the scan intents in the scheduling block must be set correctly.
- Information are at:

https://science.nrao.edu/facilities/vla/data-processing/pipeline

Many more details in talks scheduled during this workshop.

Split the target(s): split (currently split2)

- Split the target source(s) using the corrected column.
- Optionally:
 - apply time averaging
 - apply frequency averaging
 - choose spectral windows/channels
 - choose certain antennas
- The split-ed data will occupy the 'data column' in the resulting MS.
- Self-calibration can be performed if the target is strong enough.
- Self-calibrated data will be placed in the corrected column (upon running applycal).

- choose particular scans
- choose polarization

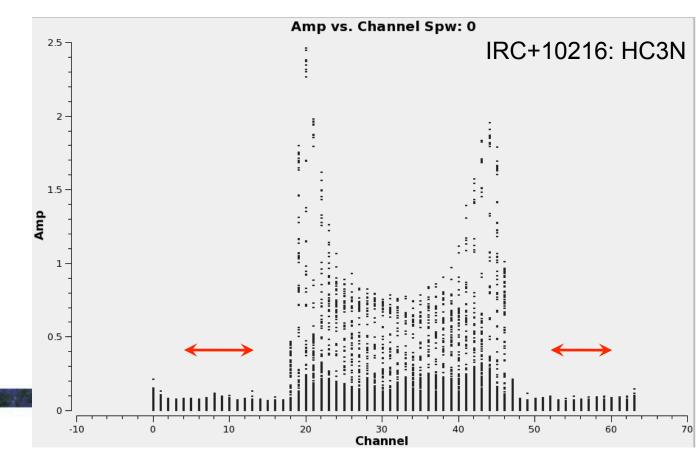
Weights:

- The weights are initialized to be channel bandwidth and time dependent $(2\Delta \nu \Delta \tau)$.
- Weights are per spw.
- CASA 4.4 and later versions also support spectral weights:
 - Weights are per channel.
 - Not used in VLA data (TBD channelized statwt)

(Re) Weighting visibilities: statwt

- statwt reweights the visibilities according to their scatter.
- Needed to down-weight underperforming antennas, or spw's affected by RFI.
- How/when to use it:
 - The data should be fully calibrated.
 - Recommended to split the data (source) of interest first (some time averaging might be helpful).
- Channelized version of statwt is coming soon.

Continuum Subtraction: uvcontsub


vis
fitspw
excludechans
want_cont

= 'my.ms'

= $6:4\sim13$; $52\sim60$ can choose multiple spw's

= False or True

= False

Doppler Correction: cvel

- The VLA does not offer Doppler Tracking, but only Doppler setting.
- The line of interest may shift over one or more channels during the observations.
- If adding different observing blocks, one can choose to first Doppler correct (cvel) each block, concatenate (concat) and then image (clean). However, the imaging task clean can do this on-the-fly.
- cvel should be run if one needs/wants to do self-calibration using a (narrow) strong spectral line.

The End of Part II

