

Ionized gas in protoplanetary disks:

ngVLA

The Next Generation Very Large Array

Enrique Macias (Boston University)

Outline • Introduction: Radio jets

•VLA Observations: what can we do now?

•ngVLA: a game changer

Ionized gas: tracer of disk photoevaporation

The Next Generation Very Large Array

Disk photoevaporation

High energy radiation

- Forbidden lines (OI, Nell, ...)
- Free-free emission from photoionized gas.

Radio jets

• Collimated ejection of material perpendicular to the disk.

• Ionized by shocks.

Origin of the ionized gas

Ionized jet:
 Photoionized disk:

Radio emission of protoplanetary disks

• Dust thermal emission: $2 \le \alpha \le 3.5$

• Free-free emission: $-0.1 \le \alpha \le 1$

GM Aur: VLA observations

- Multi-configuration VLA observations
- 7 mm and 3 cm

The Next Generation Very Large Array

GM Aur: Free-free emission

Two power laws:

- Dust thermal emission: $\alpha \sim 3.05 \pm 0.14$
- Free free emission: $\alpha \sim 0.75 \pm 0.13$

Ionized gas

GM Aur: Free-free emission

Two power laws:

- Dust thermal emission: $\alpha \sim 3.05 \pm 0.14$
- Free free emission: $\alpha \sim 0.75 \pm 0.13$
 - lonized gas

GM Aur: Two components of free-free emission

- Subtracted estimated dust emission.
- Two perpendicular components:
 - Ionized jet: $F_{\nu} \sim 45 \mu Jy$
 - Photoionized disk: $F_{\nu} \sim 30 \ \mu Jy$

Photoionized disk

$$F_{
m cm} \left[\propto \Phi_{
m EUV} \ \propto L_{
m X}
ight]$$

Measured $L_x \sim 1.6 \times 10^{30}$ erg s⁻¹ \implies 1/5 of free-free emission

Remaining emission $\implies \phi_{\rm EUV} \sim 6 \times 10^{40} \, {\rm s}^{-1}$

The Next Generation Very Large Array

HD 169142: VLA observations

HD 169142: VLA observations

Macias et al. (2017)

Spectral index: $\alpha \sim 0.82 \pm 0.17$ Ionized gas

- Ionized jet
- Photoionized gas

Future work: Larger sample

QUals.

- Estimate EUV photon luminosities
- Photoionization: correlations with L_x, Sp. type, age, TD vs FD, etc.
- Ionized jets: photoionized gas? Correlations with accretion rate, TD vs FD, etc.

ngVLA

- 10 times more angular resolution:
 - More accurate separation of jet and wind.
 - Substructure of photoionized gas.
- 10 times more sensitivity:
 - Larger sample.
 - More advanced stages of disk photoevaporation.

Radio recombination lines (H α) of photoionized gas:

• Line fluxes -
$$^{\sim}200 \mu$$
Jy at 3 mm ($^{\sim}$ H40 α)
(Pascucci et al. 2012)
 $^{\sim}100 \mu$ Jy at 1 cm ($^{\sim}$ H60 α)

• ngVLA:

- One line: SNR \sim 5 with \sim 8h, 10 km s⁻¹

• Stacking of lines: • Stacking of lines: • T4 lines at 1 cm: SNR>5 in 1h (20 GHz bandwidth) ~5 lines at 3 mm: SNR~5 in 2h (30 GHz bandwidth)

Summary

- Free-free emission in protoplanetary disks: ionized jets or photoionized gas.
- High angular resolution and sensitivity needed to separate both mechanisms.
- First resolved images of a (centrally) photoevaporating disk around a low mass star.
- ngVLA will be key to improve this study and extend it to a large sample of disks.
- ngVLA could allow the detection of radio recombination lines in protoplanetary disks.

Thanks!

The Next Generation Very Large Array

Radio jets

• Collimated ejection of material, perpendicular to the disk.

Ionized by shocks.

GM Aur: a solar analogue

- Solar analogue
- ~1-2 Myr
- Transitional disk: cavity with radius of ~24 au

lonized jet

• Empirical correlations between free-free emission and outflow rates (Anglada et al. 2015):

$$\begin{split} F_{\rm cm} \propto \dot{M}_{\rm out} v \\ \downarrow \\ \dot{M}_{\rm out} \sim (3-5) \times 10^{-9} \ {\rm M}_{\odot} \ {\rm yr}^{-1} \\ \dot{M}_{\rm acc} \sim (0.4-1) \times 10^{-8} \ {\rm M}_{\odot} \ {\rm yr}^{-1} \\ \downarrow \\ \frac{\dot{M}_{\rm out}}{\dot{M}_{\rm acc}} \end{split} \text{ consistent with younger protostars (Cabrit 2007)} \end{split}$$

