Unveiling the role of the magnetic field at the smallest scales of star formation

Chat Hull

Jansky Fellow

Harvard-Smithsonian Center for Astrophysics National Radio Astronomy Observatory

28 March 2017

NRAO Postdoc Symposium Charlottesville,VA

- Introduction: to magnetized star formation on large (~1 pc) & small (~1000 AU) scales
 - Default assumption: the "strong-field" case
- Large-scale observations suggest strong fields. Small-scale observations sometimes do...but not always
- ALMA results definitively show a weak-field case
- ALMA results also show a case where the magnetic fields are shaped by the bipolar outflow!

Scales of star formation

pc cloud **0.1** pc core 1000 AU envelope < 100 AUdisk

Intro: Magnetized star formation on large (cloud, ~parsec) scales

Magnetic fields on cloud scales

Musca dark cloud

Polaritation Associc field Fields perpendicular to cloud's long axis: fields may be dynamically important

Polarization (dust absorption)

ALIGNED DUST GRAINS

Polarization traces magnetic field orientation

ORDERED MAGNETIC FIELD

BACKGROUND STAR

(unpolarized)

Polarization (dust emission)

ALIGNED DUST GRAINS

Polarization must be rotated by 90° to show magnetic field orientation

ORDERED MAGNETIC FIELD

BACKGROUND STAR (unpolarized)

Magnetic fields on cloud scales

Musca dark cloud

353 GHz (850 microns)

10

ME

6

Planck XXXIII, 2014

Magnetic fields on large (Planck) scales

Magnetic fields on large (Planck) scales

Scaled to nearby SFRs

HRO analysis HRO = "Histogram of Relative Orientation" (see Soler+2013)

The HRO characterizes the relationship between **magnetic fields** and **filamentary structures** in the dust and gas

HRO analysis

A random HRO indicates that the magnetic field is not dictating the morphology of the star-forming material

Musings on large (Planck) scales

Planck conclusions:

- B-fields in dense gas tend to be ⊥ to filament axis
 Formed by gravitational collapse along field lines?
- B-fields are important on large (~pc) scales
 But what about small (<1000 AU) scales?

What is the role of the magnetic field in star formation?

Incidental?

Fundamental?

Intro: Magnetized star formation on small (<1000 AU) scales

The "strong-field" scenario

JRA

The large-scale magnetic field in the ISM (~100 pc) seems to be preserved...

...in the small-scale cores (0.1 pc)

Consistent fields at even smaller scalessometimes...

Magnetic field orientation is frequently consistent from $10,000 \rightarrow 1000 \text{ AU scales...}$

... but sometimes it isn't

The canonical picture: hourglass fields

The typical initial condition for the magnetic field in models of star-forming cores is an **hourglass** with its symmetry axis aligned with the core's rotation axis (see also Fiedler & Mouschovias 1993)

Allen, Li, & Shu 2003

The canonical picture

Note the thin, blue magnetic field lines in an hourglass shape

Credit: Bill Saxton, NRAO/AUI KALYPSO project, Harvard/CfA

Sightings of the fabled hourglass B-field

CARMA

Combined Array for Research in Millimeter-wave Astronomy

Consortium: Berkeley, Caltech, Illinois, Maryland, Chicago

Photo credit: C. Hull

6 × 10-m, 9 × 6-m, and 8 × 3.5-m telescopes

S-FMCAT

Observations at I cm, 3 mm, and
I mm (polarization!)

- Was located in Cedar Flat, CA (near Bishop)

This is me installing a 1 mm polarization receiver between 2010 and 2012

TADPOL survey

TADPOL results

NRÃO

Credit: Bill Saxton, NRAO/AUI KALYPSO project, Harvard/CfA

TADPOL results

NRÃO

Outflow vs. B-field: distribution

Simulation: outflows & B-fields aligned within a 20° cone (tightly aligned)

Simulation: outflows & B-fields are randomly oriented

Simulation: outflows & B-fields aligned between 70–90° (preferentially misaligned)

ALMA observations

ALMA

K MARK & MANNE

Cycle 2, 3, & 4 ALMA obs.

Class 0 CORE POLARIZATION (PI: Hull)

0.36" dust pol @ 850 um

0.36" and I" lines & continuum @ I mm

Cycles 3 & 4: 0.06" dust pol @ 850 um

Probing ~1000 →25 AU disk scales

JCMT Serpens Main

Hull, Mocz, Burkhart+2017, under revision (data from Matthews+2009)

The ALMA-scale magnetic field, which is "attached" to

No hourglass!

The ALMA-scale magnetic field, which is "attached" to the forming stellar system, is *not* reminiscent of the large-scale field.

This is in contrast to 50 years of theory, and to recent papers such as Li+2009, who suggested that the large-scale mean field direction could be preserved all the way down to the scale of forming stars.

Keep an eye on the magnetic field strength here (in microgauss)

AREPO simulations

B=1

Chat Hull – NRAO Postdoc Symposium – 28 Mar 2017 38

Hull, Mocz, Burkhart+2017, under revision

B=10

37350 AU [= 0.2 pc]

3000 AU

B=100

37350 AU [= 0.2 pc]

3000 AU

HRO analysis HRO = "Histogram of Relative Orientation" (see Soler+2013)

The HRO characterizes the relationship between **magnetic fields** and **filamentary structures** in the dust and gas

HRO analysis

A random HRO indicates that the magnetic field is not dictating the morphology of the star-forming material

HRO analysis: ALMA & AREPO

The **ALMA data** exhibit a random HRO.

The **strongly magnetized simulation**, has a dynamically important magnetic field, but is *inconsistent* with our ALMA data

45

Hull, Mocz, Burkhart+2017, under revision

CARMA

FUTURE WORK: are the deviations at small scales due to toroidal wrapping of fields by disk rotation?

This will be answered by my Cycle 3 ~30 AU polarization observations, which were recently taken!

2000

No Children A

ALMA [•]

The plot thickens...

Serpens SMMI, the nearby neighbor of Ser-emb 8, has an outflow that is shaping the magnetic field!

5,000 AU

Hull, Girart+2017, in prep.

Hull, Girart+2017, in prep.

Hull, Girart+2017, in prep.

Summary (Ser-emb 8)

- ~100 AU resolution ALMA observations of magnetic fields in Ser-emb 8
- Field orientation **not** preserved from large scales
- No hourglass!

- High-DR, ALMA-resolution AREPO simulations
- Initial conditions of the cloud dictate what we see at small scales
- We see an alternate mode of star formation where the field morphology is dictated by turbulence and **not** by a strong B-field

Summary (Ser SMMI)

- The outflow from Serpens SMMI appears to be shaping the magnetic field
- Why is this? More evolved?
- Hints of an hourglass... but one created by the outflow?

....

۰.