# Maximizing the Scientific Potential of Multi-band Extragalactic Surveys using Forced Photometry



NRAO Postdoc Symposium March 28, 2017 <u>Collaborators</u>: Mark Lacy SERVS/Deepdrill team

## **Galaxy Evolution**

- How is star formation quenched" in massive galaxies?
- What is the role of AGN feedback in galaxy evolution?
- How did the first galaxies form at high redshift?



### HST Observations

### Illustris Simulations

### **Galaxy Evolution Science with Spitzer**



2

3

Observed wavelength (µm)

5

galaxies

Soifer et al. 2008

0

0

### **From Extragalactic Surveys to Science**



### Robust photometric redshifts

Robust galaxy properties

Science!

### Spitzer Extragalactic Representative Volume Survey







### Post-cryogenic IRAC 3.6 + 4.5µm



P.I. – Mark Lacy

- Stellar mass assembly
- Obscured star formation
- Role of AGNs in galaxy evolution

### **SERVS Fields**



# **Multi-band Data in XMM-LSS**

### VIDEO

### **CFHTLS-D1**

### SERVS







Bands: Ks, H, J, Y, Z (Jarvis et al. 2013)  $\theta \approx 0.8''$  Bands: I, R, G, Z, U Bands (Gwyn et al. 2008; 2012) (Mau $\theta \approx 0.8''$ 

Bands: 3.6, 4.5 μm (Mauduit et al. 2012)

**θ** ≈ 2.0″

<u>Goal</u>: Construct a catalog of robust multi-band photometry across 12 NIR and optical bands with different resolutions!

# **Traditional Positional Cross-Matching**

### VIDEO







### **SERVS**





# **VIDEO Sources Blended in SERVS**



# Forced Photometry with The Tractor



*The Tractor* Optimizes the likelihood for the source properties given:

- 1. Source position
- 2. Surface brightness model
- 3. PSF, noise, and WCS info
- 4. Multi-band images

http://thetractor.org (Lang et al. 2016)



## **XMM-LSS Square Degree Test Field**



<u>Input catalog</u>: 117,281 sources selected from the VIDEO source catalog located in the deg<sup>2</sup> CFHTLS-D1 test field

### "Forced Photometry" with The Tractor

Source fitting using our parallelized Python implementation



Nyland et al. 2017

## **Improved Photometric Redshifts**

Nyland et al. 2017; Pforr et al., in prep.



Tractor yields accurate photometric redshifts for 2X more sources and identifies more candidate high-z objects!

## **Improved Photometric Redshifts**

#### Nyland et al. 2017; Pforr et al., in prep.



Spectroscopic redshifts from VVDS and VUDS (Le Fevre et al. 2013; 2015)



**Forced Photometry** 

photometric redshifts!

## **IRAC-Selected Photometry**

- 8,441 sources detected in at least one SERVS band but not in VIDEO
- Increased fraction of objects with multi-band detections
- 0% to 67% improvement in detection rate at *K*s-band

Provide constraints on properties of rare "extremely red objects"



# **Upcoming** *Tractor* Applications

- Tractor photometry for all 5 SERVS fields (in progress now!)
- Incorporation of new optical survey data from Hyper Suprime Cam and PanSTARRs
- Future application to *Spitzer* Deep Drill survey of pre-defined LSST deep-drilling fields



## **Future Science Applications**

### ★ Selection of NIR/optical quasar candidates



#### Type I quasar selection (3.7 < z < 4.7) in the deg<sup>2</sup> XMM-LSS test field

### ★ Cosmic evolution of radio AGNs and their host galaxies



#### Radio spectral indices for SERVS sources in existing 150 and 1400 MHz surveys

# Synergy with VLASS



Highest resolution "all sky" radio continuum survey ever performed



### **Next Generation VLA**

# ngVLA =



- 300 x 18m dishes
- 300 km baselines
- 1-115 GHz



# **Galaxy Evolution and the ngVLA**

15'

14'

13'

12'

11'

10'

09

13<sup>h</sup>30<sup>m</sup>12<sup>s</sup>

54"

48''

42"

36"

30"

24"

00<sup>h</sup>55<sup>m</sup>52<sup>a</sup>

26°24'18"

00<sup>s</sup>

CO(1-0) at z = 0

29<sup>m</sup>48<sup>s</sup>

3C28 VLA C-band B+C Config (z = 0.2)

J2000 Right Ascension

36<sup>s</sup> 30<sup>s</sup>

49<sup>8</sup>

47°08'

### ngVLA Simulations



"Southwest" Array

### VLA

NGC5194 BIMA Map (z = 0.0015)

115.1253 GHz

### ngVLA



CO(1-0) at z = 0.1



Continuum at z = 0.2

50<sup>8</sup>

J2000 Right Ascension

51°

Continuum at z = 1.0

# Future AGN Studies with the ngVLA

#### Nyland et al., in prep.

Wagner 2016



Survey spectral ages to constrain radio source life cycles & evolutionary impact

Space density of radio AGNs with different cold gas distributions and properties as a function of redshift





Direct imaging of radio jets interacting with cold gas (HI and CO) – address key jet physics questions!

## Summary

### ★ New Tractor forced photometry over 1 deg<sup>2</sup> of SERVS:

- Accurate source cross-matching
- **De-blended IRAC photometry**
- **o** Better sensitivity to faint sources
- Significantly more accurate  $z_{phot}$

Nyland et al. 2017 (submitted to ApJ)

- ★ SERVS + radio (including VLASS) data will provide new insights into cosmic evolution of radio AGNs and black hole-galaxy coevolution
- ★ Next generation telescopes such as the ngVLA will provide further advances in our understanding of galaxy evolution and AGNs!