

In Search of New MSPs for Pulsar Timing Arrays

Kevin Stovall, NRAO Socorro NANOGrav Collaboration

NANOGRAV NRAO Postdoc Symposium, March 27, 2017

- •NANOGrav = US/Canada-based collaboration working to detect nHz GW via pulsar timing.
- Large and still growing collaboration: Currently over 80 members (~45 SP, ~25 PD, ~10 GS)
- •Geographically distributed, ~20 different institutions.
- •Strong commitment to undergrad education and involvement in research.
- •Awarded \$14.5M / 5 year NSF Physics Frontier Center grant

See www.nanograv.org for more info

Pulsar Timing Arrays

Image Credit: David Champion

Other PTA Experiments Parkes Pulsar Timing Array (PPTA) European Pulsar Timing Array (EPTA) International Pulsar Timing Array (IPTA)

NANOGrav monitors a set of very stable millisecond pulsars (MSPs) to look for GW signals. Such signals would be correlated vs. pulsar angular separation.

The NANOGrav Collaboration et al. 2015, ApJ, 813, 65

Hellings & Downs Curve

Hellings & Downs 1983, ApJ, 265, 39

Pulsar Timing Array

Pulsar Timing Array

> NANOGrav CC 00 The spectrum of gravitational wave astronomy Uvingston, Louisiana (L1) h Cosmic Microwave Background All three experiments m changes in light travel tin **Pulsar Timing** 10^{-5} between objects due to as the man man and the second with the hard the Arrays 10^{-10} Primordial gravitational 0.35 Time (s) 0.35 0.40 Time (s) 0.40 0.45 0.30 Space-based waves Interferometers 10^{-15} Ground-based Supermassive black Interferometers hole binaries and mergers 10^{-20} Primordial gravitational waves Stellar mass compact binaries Supermassive black hole 10^{-25} Neutron star mergers mergers Black hole mergers 10^{-16} 10^{-8} 10^{-4} 10^{2} Frequency [Hz]

Current Telescopes

Arecibo Observatory

Green Bank Telescope

305 meter diameter Dec range:-1 deg to 38 deg Sources visible for ~2 hours Sources visible for many hours L-Band SEFD $\sim 2 \text{ Jy}$

100 meter diameter Dec range: $> -45 \deg$ L-Band SEFD ~ 10 Jy

Frequency Coverage

MSPs

Why we need more MSPs

Siemens et al. 2013, CQG, 30, 4015

Where to Search for MSPs?

Nearby MSPs are expected to be essentially isotropic.

Searches in 1990s found many MSPs at a wide range of Galactic latitudes.

Low frequencies are optimal:

- Dispersion/Scattering are less of a problem out of Galactic plane, so we can take advantage of steep spectrum
- Larger beam size -> faster survey speed

Large Area Pulsar Surveys

Green Bank North Celestial Cap (GBNCC) Arecibo 327 MHz Drift Scan (AO327)

Survey Parameter Comparison

Survey	Center Frequency (MHz)	Bandwidth (MHz)	Frequency Resolution (kHz)	Sample Time (us)	Integration Time (s)	Style
AO327	327	57/69	56/24	125/82	64	Drift
GBNCC	350	100	24	82	120	Pointed

AO327 - Deneva et al. 2013, ApJ, 775, 51 GBNCC - Stovall et al. 2014, ApJ, 791, 67

AO327 Collaborators: J. Deneva, M. Bagchi, P. Freire, F. Jenet, J. Martinez, M. McLaughlin

GBNCC Collaborators: S. Ransom, M. Decesar, R. Lynch, J. Swiggum, H. Al Ali, P. Chawla, T. Cromartie, J. Hessels, F. Jenet, D. Kaplan, V. Kaspi, V. Kondratiev, J. van Leeuwen, M. McLaughlin, M. Roberts, X. Siemens, R. Spiewak, I. Stairs

Survey Sensitivities

GBNCC

145 Pulsars18 MSPs11 RRATs1 DNS (2 more?)2 wide binaries

~75% complete

We plan to make data available, ~500 TB, we are converting from 8-bit to 2-bit

http://astro.phys.wvu.edu/GBNCC/

5 MSPs added to NANOGrav so far, 2 more currently being tested for potential inclusion and ~5 others currently being follow-ed up that may be included in the future

J0636+5129

- Is a 2.87-ms pulsar in a 96-minute orbit with a 0.008 solar mass (9 M_J) companion.
- Assuming inclination angle of 60 degrees: separation between the two stars is about 0.5 solar radii
- Appears to be a black widow system, but no radio eclipses

J1816+4510

- •Eclipsing system with an optically detected companion.
- •Spectrum is most similar to a white dwarf, but has high metallicity.
- Pulsar mass is ~1.84(11) solar masses.

Stovall et al. 2014, ApJ, 791, 67

Kaplan et al. 2012, ApJ, 753, 174

J0214+5222 •24.5 ms pulsar with a DM of 22 pc/cm^3 (D~1 kpc).

 In a 512 day orbit with a ~0.4 solar mass companion.

AO327

Discoveries to date: 72 Pulsars, 8 MSPs, 13 RRATs, 2 DNSs, 1 wide binary

http://www.naic.edu/~deneva/drift-search/

AO327 Discoveries

3 MSPs added to NANOGrav so far, ~3 others currently being followed up that may be included in the future

AO327 Discoveries

PSR J2234+0611 3.58 ms pulsar with DM of 10.8 pc/cm^3 in a 32 day orbit with a 0.2 solar mass companion, but eccentricity ~0.13.

Disrupted Triple System? Unlikely RD-AIC? Maybe Freire & Tauris 2014, MNRAS, 438, L86 Circumbinary disk? Maybe Antoniadis 2014, ApJ, 797, 24

AO327 Discoveries

PSR J0453+1559

- 46 ms pulsar with a DM of 30.3 pc/cm^3 in an eccentric orbit (0.112) with a ~1.2 solar mass companion.
- Shapiro Delay measurement combined with rate of advance of periastron gives $M_P=1.559(5)$ solar masses and $M_C=1.174(4)$ solar masses.
- Largest pulsar mass for DNS system and companion has lowest neutron star mass.

Orbital Phase (cycles)

5 Year MSPs

9 Year MSPs

11 Year MSPs

Current MSPs

Current MSPs

NANOGrav MSPs

Conclusion

- NANOGrav is using pulsars as a galactic scale gravitational wave detector.
- We gain sensitivity by finding additional MSPs and we have reason to believe not all good MSPs have been found.
- There are multiple large-scale search efforts ongoing to find suitable MSPs and they have added many new MSPs to the array.
- Eight out of the ~60 MSPs being timed were found in the 2 surveys mentioned here (within the past 5 years) and more are currently being tested for future inclusion.