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Neutral Outflow in Star-Forming Galaxies
AY)
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Neutral Outflow in Star-Forming Galaxies
AY)
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Multi-Phase Structure of Galactic Winds

CO emission
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Multi-Phase Structure of Galactic Winds

Interface of wind cavity with surrounding cold gas
produces Ha, PAH emission, high dust temperatures
Coincidence of Ha, dust, 8um with CO M82
H, becomes Hl as it
leaves galaxy

Mass profiles Hot Gas
Outflow

H, and HlI flow along minor axis
Velocity gradients along minor axis

HI and H, confine outflow for several kpc
Double peaked profiles at high latitude,
high dust temperatures

Tidal HI extends across group
HI images, mass profile

HI Superstructulf \ / ‘\
|

Dust Halo

H, Halo

N\ 4

Dusty material forms a spheroidal halo near galaxy, . material must fall back
mostly mixed with HI at large distances H, expelled over wide angle Mass conservation and

Finite extent, round shape, mass profiles Angular momentum flow lines and

slowing rotation, round morphology finite extent of emission
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What Drives Galactic Winds

m Supernova-Driven Winds (Larson etal. 1974,
Chevalier & Clegg 1985, Dekel & Silk 1986)

m Radiation Pressure (Murray et al. 2005, Zhang &
Thompson, 2012)

B Cosmic Ray (Ipavich 1975, Socrates et al. 2008)
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What Drives Galactic Winds

m Radiation Pressure (Murray et al. 2005, Zhang &
Thompson, 2012)
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Radiation Pressure Driven Wind
in Starbursts and Star-Forming Galaxies
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Radiation Pressure Driven Wind
in Starbursts and SFG

n=10% (cm™3)

Semenov et al. (2003)
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Semenov et al. (2003)

------------- =10 (cm-3)
Bell & Lin (1994)

Thompson et al. 2005 * * * * * * *
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Radiation-Pressure on Dust: analytic

O High-z ULIRGs
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Uniform Self-Gravitating Disk

-- Uniformly Bright Disk
-- Optically Thick (to IR)

-- Radiating at Eddington Limit
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Vwind and Vrot

May be match the observation
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Dusty Winds
Radiation Hydrodynamic Simulations
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Dusty Winds
Radiation Hydrodynamic Simulations

m Is Radiation Pressure on Dust Strong
enough to Drive a Galactic Wind?
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Gas-Radiation Interaction
Radiation Hydrodynamic Simulations

m Is Radiation Pressure on Dust Strong
enough to Drive a Galactic Wind?

APwind £ [
dt C Dusty Gas
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Gas-Radiation Interaction
Radiation Hydrodynamic Simulations

m Is Radiation Pressure on Dust Strong
enough to Drive a Galactic Wind?

| [ ] [ IR light

~ (1 -+ nTIR)_ Dusty Gas
dt c I

1.2.2.2.8.8.8

m 1 << 1, (Krumholz & Thompson 2012, 2013)

dpwind

my— 1, analytic model (Murray, Quataert &
Thompson 2015)
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Gas-Radiation Interaction
Radiation Hydrodynamic Simulations

m Is Gas Turbulence important?

® Momentum Coupling between Radiation
and Gas?

= We need a more sophisticated algorithm
than previous numerical simulations.
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Radiation-Pressure on Dusts:
RHD Simulation

Flux Limited Diffusion

F, = ——VE,

OF

Levermore & Pomraning 1981
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Radiation-Pressure on Dusts:
RHD Simulation

Flux Limited Diffusion Variable Eddington Tensor

F, = ——VE,

OF

Levermore & Pomraning 1981
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FLLD vs VET

FLD VET density
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Various Optical Depth
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FLLD vs VET
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FLLD vs VET

FLD VET density
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Wind-Radiation Interaction (FLD)
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Trapping Factor

== Sjmulation
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Wind-Radiation Interaction (FLD)
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Wind-Radiation Interaction (VET)
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7 =10
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Trapping Factor
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Radiation-Pressure-Driven Wind
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Radiation-Pressure-Driven Wind
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Radiation-Pressure-Driven Wind

.=1,3,10
tr = 1.8, 7.9, 48.5
n = 0.90, 0.69, 0.47
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Gas-Radiation Interaction
Radiation Hydrodynamic Simulations

m Is Radiation Pressure on Dust Strong
enough to Drive a Galactic Wind?

dpwind £
dt C

~ (1 -+ 777-IR)

m 1 << 1, (Krumholz & Thompson 2012, 2013)

my— 1, analytic model (Murray, Quataert &
Thompson 2015)
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Gas-Radiation Interaction
Radiation Hydrodynamic Simulations

m Is Radiation Pressure on Dust Strong
enough to Drive a Galactic Wind?

dpwind £
dt C

~ (1 -+ 777-IR)

my~0.5-0.9
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LIRGs and ULIRGs
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Summary

m Disks radiating at or even somewhat below the Eddington
limit are unstable to driving large-scale winds by radiation

pressute.

B Momentum Coupling between gas and radiation 1s more
efficient using the VET simulation.

m We find a moderate amplification factor 7.
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