VLA Data Reduction II: Calibration

Amy Kimball, NRAO
The MS structure

- When you load your data from the archive, your MS will only have the ‘Data’ column.
- The other two columns can be created by various means.
- The creation of the other two columns \rightarrow MS *triples* in size.
- The ‘Model’ Column is optional.
 - If not created \rightarrow MS *doubles* in size.
 - Models can be “attached” to the MS, FT-ed and used when needed (replacing the need for the ‘Model’ column).
Calibration & Imaging Flow

The MS

‘Data’

The MS

‘Data’ → ‘Corrected’

Calibration Tasks

Apply Calibration

Calibration Tables

CLEAN

VLA Data Reduction Workshop – 23-27 October 2017
Calibration

- Correcting antenna positions
- Gain Curves
- Opacity (HF) and Ionospheric (LF) corrections
- Requantizer gain calibration
- Setting the flux density scale
- Delay calibration
- Initial Phase only calibration (HF)
- Bandpass calibration
- Complex gain calibration
- Polarization Calibration
- Setting the flux scales of the secondary calibrators
gencal

- **gencal** is a task for various types of corrections:
 - ‘amp’ = amplitude correction
 - ‘ph’ = phase correction
 - ‘sbd’ = single-band delay
 - ‘mbd’ = multi-band delay
 - ‘antpos’ = ITRF antenna position corrections
 - ‘antposvla’ = VLA-centric antenna pos. corrections
 - ‘swpow’ = EVLA switched-power gains
 - ‘rq’ = EVLA requantizer gains
 - ‘swp/rq’ = EVLA switched power gains/req. gains
 - ‘opac’ = Tropospheric opacity
 - ‘gc’ = Gain curve (zenith-angle-dependent gain)
 - ‘eff’ = Antenna efficiency (sqrt(K/Jy))
 - ‘gceff’ = Gain curve and efficiency
 - ‘tecim’ = Total electron content for ionospheric corrections
Antenna Positions: gencale

• Correct baselines after antenna moves
 – operator’s log reports recent antenna moves

• Use the task gencale to produce a calibration table that will include the antenna position corrections
 – (check whether table was needed/created)

 caltype = ‘antpos’
 caltable = ‘antpos.cal’

• Baseline correction related information is at:
 – http://www.vla.nrao.edu/astro/archive/baselines/
Gain Curves: *gencal*

- Large antennas have a forward gain that changes with elevation.
- Gain curves describe how each antenna behaves as a function of elevation, for each receiver band.
- The polynomial coefficients for the VLA are available directly from the CASA data repository.
- Especially important for higher frequencies.
- In *gencal*, set

```python
  caltype = 'gc'
  caltable = 'gaincurve.cal'
```
Opacity Corrections (HF): *plotweather*

- Atmospheric optical depth corrections.
- Important for high frequency observations (>15 GHz).
- *Plotweather* is the task to estimate opacities and to make weather plots.
 - Uses weather statistics and/or seasonal models.
 - `tau_val = plotweather(vis='my.ms', doPlot=True, plotName='Weather.png')`
 - Gives one value per spw
Opacity Corrections (HF): *gencal*

- After *plotweather* use *gencal* to make a calibration table using the derived opacities:

  ```
  caltype = 'opac'
  caltable = 'opacity.cal'
  parameter = tau_val
  spw     = '<match to tau_val spws>'
  ```
Ionosphere Correction: \texttt{gencal}

Needed for lower frequency observations (P, L, and S-bands)
 \begin{itemize}
 \item Important for polarimetry
 \item Under testing
 \end{itemize}

1) Import the TEC image
\begin{verbatim}
from recipes import tec_maps
tec_image, tec_rms_image, tec_graph =
tec_maps.create(vis='my.ms', doplot=True)
\end{verbatim}

2) Run \texttt{gencal}
\begin{verbatim}
caltype = 'tecim'
caltablen = 'tecim.cal'
infile = tec_image
\end{verbatim}
Requantizer gains: *gencal*

- Optimizes the digital power within each spectral window.
- Required for 3-bit data.
- Strongly recommended for P-band 8-bit data.
- In *gencal*, set

  ```
  caltype = 'rq'
  caltable = 'requant_gains.cal'
  ```
Setting the flux density scale: `setjy`

- Calculates the absolute flux density as a function of frequency (and time):
 - for standard flux density calibrators (e.g., Perley-Butler 2013)
 - and for Solar System objects (e.g., Butler-JPL-Horizons 2012)
- If provided, attaches a model record to the MS

```plaintext
vis                =  'my.ms'
field             =  '<field name or #>'
spw               =  ''
scalebychan       =  True
standard          =  'Perley-Butler 2013'
model             =  '<source/band model name>'
listmodels        =  False
usescratch        =  False
```
Setting the flux density scale: `setjy`

- Calculates the absolute flux density as a function of frequency (and time):
 - for standard flux density calibrators (e.g., Perley-Butler 2013)
 - and for Solar System objects (e.g., Butler-JPL-Horizons 2012)

- If provided, attaches a model record to the MS

```
vis                 = 'my.ms'
field               = '<field name or #>'
spw                 = ''
scalebychan         = True
standard            = 'Perley-Butler 2013'
model               = '<source/band model name>'
listmodels          = False
usescratch          = False
```
Calibration: `setjy`

- `listmodels`
 - If True, the task will only list the available primary calibrator models (3C138, 3C147, 3C286, 3C48; at L, S, C, X, U, K, A, Q bands --- P band not yet available).
 - If False, the task will calculate the flux density.

- `usescratch`
 - If True, the ‘Model’ column will be created. This will increase the size of the MS.
 - If False, the model is simply attached to the MS. When needed, it will be FT-ed and used.
Setting the flux density scale: setjy

• Calculates the absolute flux density as a function of frequency (and time):
 – for standard flux density calibrators (e.g., Perley-Butler 2013)
 – and for Solar System objects (e.g., Butler-JPL-Horizons 2012)

• If provided, attaches a model record to the MS

```python
vis                 = ‘my.ms’
field               = ‘<field name or #>’
spw                 = ‘’
scalebychan         = True
standard            = ‘Perley-Butler 2013’
model               = ‘<source/band model name>’
listmodels          = False
usescratch          = False
```

VLA Data Reduction Workshop – 23-27 October 2017 – Socorro
Calibration: setjy

The `scalebychan` parameter

- **When **False: The values will be per spectral window.
- **Do not set it to False!**
Calibration: *setjy*

The scalebychan parameter

- When *True*: The values will be per spectral channel
Setting the flux density scale: \textit{setjy}

- User can also provide flux density values instead of letting the task calculate them (manual mode)

\begin{verbatim}
standard = 'manual'
fluxdensity = [1, 0, 0, 0]
spix = [alpha, beta]
reffreq = '1GHz'
\end{verbatim}

Can also provide

- \texttt{polindex}: coefficients for frequency dependence of linear polarization fraction
- \texttt{polangle}: coefficients for frequency dependence of polarization angle
- \texttt{rotmeas}: rotation measure (rad/m2)
Delays
Delays

Phase vs. Frequency, ea01-qa02, LL

Frequency

Phase

C0

D0
Delay Calibration: **gaincal**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vis</code></td>
<td><code>'my.ms'</code></td>
</tr>
<tr>
<td><code>caltable</code></td>
<td><code>'delays.cal'</code></td>
</tr>
<tr>
<td><code>field</code></td>
<td><code><field name or #></code></td>
</tr>
<tr>
<td><code>solint</code></td>
<td><code>'60s'</code></td>
</tr>
<tr>
<td><code>refant</code></td>
<td><code>'ea??'</code></td>
</tr>
<tr>
<td><code>gaintype</code></td>
<td><code>'K'</code></td>
</tr>
<tr>
<td><code>gaintable</code></td>
<td><code>'[previous cal tables]'</code></td>
</tr>
</tbody>
</table>

- Choose **1 min** of data on a strong source (through `selectdata` → `timerange`).
- `refant` should have baselines to all the antennas in the selected time range.
- This is not a Global Fringe Fitting; it solves for antenna based single-band delays or multi-band delays.
A note on the new parameter docallib

In current version of CASA, make sure

\[
\text{docallib} = \text{False}
\]

- \text{docallib} refers to a “calibration library”, a new portable interface for describing ensembles of calibration replacing \text{gaintable}, \text{gainfield}, etc... parameters.
- Will enable on-the-fly calibration in various tasks.
- Will provide increased capability and flexibility.
- Can be used now but remains limited in some aspects.
- New features, additional flexibility, and broader deployment in more tasks will be offered in later CASA releases.
Before Bandpass Calibration

• Bandpass calibration is not only needed for spectral-line observations, but also for continuum.

• Before calibrating the bandpass, do phase-only calibration on the bandpass calibrator (to be applied when calibrating the bandpass).
 • Prevents decorrelation when vector averaging.
 • Critical for high frequency observations.
 • Can also be used in low frequency observations.
Initial Phase only calibration: gaincal

- Run *gaincal* on the bandpass calibrator using:
 - a short solution interval, and
 - a few channels per spw (free of RFI).
- This table should only be used while calibrating the bandpass.
- In *gaincal*, set

 - `caltable` = `bpphase.gcal`
 - `field` = `<bandpass_cal_name_or_#>`
 - `calmode` = `p`
 - `gaintype` = `G`
 - `gaintable` = `[various calibration tables]`
 - `solint` = `<a short time interval>`
 - `spw` = `x~y:n~m`
Initial Phase only calibration
Plotting the solutions: *plotcal*

- *plotcal* is a multi-purpose plotter for calibration results
- To plot the phase calibration results:

```plaintext
caltab    = 'bpphase.gcal'
xaxis     = 'time'
yaxis     = 'phase'
spw       = '1'
subplot   = 331
iteration = 'antenna'
plotrange = [0, 0, -200, 200]
```
Initial Phase only calibration
Plotting the solutions: plotcal
Bandpass Calibration: *bandpass*

- Needed for continuum observations too.

Data before bandpass calibration
Bandpass Calibration: *bandpass*

- Needed for continuum observations too.

Data after bandpass calibration
Bandpass Calibration: \textit{bandpass}

\begin{itemize}
 \item caltable = ‘bandpass.bcal’
 \item field = ‘<field name or #>’
 \item solint = ‘?’ [time; optionally \textit{frequency}]
 \item refant = ‘ea??’
 \item solnorm = False
 \item bandtype = ‘B’ or ‘BPOLY’
 \item gaintable = [various calibration tables]
\end{itemize}

- If using a source other than the flux calibrator, the spectral index (and spectral curvature) should be accounted for.

- CASA will report these while bootstrapping the flux densities, and store the numbers in a dictionary.
 - Use \texttt{setjy} to make use of these values.
Bandpass Calibration
Plotting the solutions: \textit{plotcal}

\begin{verbatim}
caltablen = 'bandpass.bcal'
xaxis = 'chan'
yaxis = 'amp' or 'phase'
spw = '1'
subplot = 331
iteration = 'antenna'
\end{verbatim}
Bandpass Calibration

Plotting the solutions: `plotcal`

8 MHz spw data set at Ka-band
Bandpass Calibration
Plotting the solutions: \textit{plotcal}

8 MHz spw data set at Ka-band (no delay calibration was performed prior to the bandpass calibration).
Complex Gain Calibration: *gaincal*, High Freq

1) **‘Data’**

- Prior cal tables
 - `calmode = 'p'
 - `short solint`
 - `P_ShS.g`

2) **‘Data’**

- Prior cal tables
 - `calmode = 'ap'
 - `solint = 'inf'
 - `AP_scan.g`

3) **‘Data’**

- Prior cal tables
 - `calmode = 'p'
 - `solint = 'inf'
 - `AP_scan.g`

Examine the resulting tables with *plotcal*
Complex Gain Calibration: \textit{gaincal}, Low Freq

1) \textbf{‘Data’} \times \textbf{prior cal tables} \quad \textbf{On all calibrators}

\quad \textbf{calmode} = ‘ap’

\quad \textbf{solint} = ‘inf’

\Rightarrow \textbf{AP_scan.g}

\begin{itemize}
 \item Examine the resulting table with \textit{plotcal}.
 \item If the phases show rapid variations (e.g., due to ionosphere), use the method outlined for high frequencies.
 \item The VLA calibration pipeline uses the high-freq approach.
\end{itemize}
Polarization Calibration

- **Gaincal**
 - solving for the cross-hand delays

- **Polcal**
 1. solving for the leakage terms
 2. solving for the R-L polarization position angle

- For VLA observations, and particularly for wide bandwidth observations: have channel based solutions for the leakage terms and for the R-L polarization position angle.

- Both CASA and AIPS allow solving for these per spectral channel.
Polarization Calibration: \textit{gaincal}

• For polarization calibration, you will typically observe
 • A source to calibrate the leakage terms (this can be a polarized or an unpolarized source), \textit{and}
 • A source with very well known polarization characteristics to calibrate the polarization position angle.

• Before running \textit{polcal}, calibrate the cross hand delays (critical if your leakage calibrator is polarized):
 • Use the (polarized) position angle calibrator (use \texttt{setjy} to provide its Q and U values).
 • Run \textit{gaincal} with \texttt{gaintype = ‘K\textsc{CROSS}’}
 • Examine the resulting table with \textit{plotcal}.

Apply the resulting table in subsequent steps.
Polarization Calibration: *polcal*

1. Solving for the leakage (D) terms (instrumental pol.)

- For an unpolarized calibrator ($Q=U=0$):
 - **Use** `poltype = ‘Df’` **to solve for the leakage terms (D)** on a per-channel (f) basis.
 - Single scan

- For a polarized calibrator with unknown polarization:
 - **Use** `poltype = ‘Df+QU’` **to solve for channel-based leakage terms & apparent source polarization.**
 - Several scans, and a good parallactic angle coverage

Examine the resulting tables with *plotcal*.
Polarization Calibration: \textit{polcal}

2. Solving for the R-L polarization position angle

- To obtain an accurate polarization position angle, the R-L phase needs to be calibrated.
- In \textit{polcal}, use \texttt{poltype = 'Xf'} for a frequency dependent polarization position angle calibration.
- Requires the use of a (polarized) source with known polarization angle (use \texttt{setjy} to set its Q and U values).
- Examine the resulting table with \textit{plotcal}.
Scale flux density: \textit{fluxscale}

- Bootstraps the flux density scale of the secondary calibrators.
- Uses the scan-based \textit{`ap'} gain table

\begin{verbatim}
vis = 'my.ms'
caltable = '<input ap table>'
reference = '<field # of flux cal>'
fitorder = 1 or 2
fluxtable = '<output cal table>'
incremental = True or False
\end{verbatim}

- Reports the flux density values per calibrator per spw.
- Fits across the spws of each calibrator to report a \textit{spectral index and curvature} (can be supplied through setjy if needed).
Scale flux density: *fluxscale*

- Bootstraps the flux density scale of the secondary calibrators.
- Uses the scan-based ‘ap’ gain table

```plaintext
vis                  = 'my.ms'
caltabler            = '<input ap table>'
reference            = '<field # of flux cal>'
fitorder             = 1 or 2
fluxtable            = '<output cal table>'
incremental          = True or False
```

- Reports the flux density values per calibrator per spw.
- Fits across the spws of each calibrator to report a *spectral index and curvature* (can be supplied through setjy if needed).
Scale flux density: *fluxscale*

\[
\text{fluxtable} = \langle \text{output cal table} \rangle
\]

\[
\text{incremental} = \text{True or False}
\]

- If `incremental = False`
 The output table replaces the input ‘ap’ table.

- If `incremental = True`
 The output table contains only the scaling factors, and should be used alongside the input ‘ap’ table.
Apply Calibration: *applycal*

- `field` = `<field name or #>`
- `interp` = nearest *or* linear
- `gaintable` = [various calibration tables]
- `gainfield` = fields corresponding to the above tables
- `parang` = False (True if polcal was run)
- `calwt` = False

- Calibrate one field at a time (but targets with the same calibrators can be grouped together).
- Use the appropriate tables for each source.
- Make sure to match the gainfield entries with the gaintables.
Examine the calibrated data (the corrected column) with *plotms*.

Flag, if needed, and re-calibrate.
The VLA Calibration Pipeline

- Performs basic flagging and calibration using CASA.
- Primarily designed for Stokes I continuum data.
- To run successfully, the scan intents in the scheduling block must be set correctly.
- Information are at: https://science.nrao.edu/facilities/vla/data-processing/pipeline
- (Many more details in later talks in this workshop.)
Split the target(s): split

• Split the target source(s) using the corrected column.
• Optionally:
 – apply time averaging
 – apply frequency averaging
 – choose certain antennas
 – choose spectral windows/channels
 – choose a certain UV range
 – choose particular scans
 – choose polarization

• The split out data will occupy the ‘data’ column in the output MS.
• Self-calibration can be performed if the target is strong enough.
• Self-calibrated data will be placed in the corrected column (upon running applycal).
Weights:

- The weights are initialized to be channel bandwidth and time dependent ($2\Delta \nu \Delta \tau$).
- Weight values are per spw.
- CASA infrastructure supports weight spectrum (by channel):
 - Not yet used in VLA data
(Re)Weighting visibilities: \textit{statwt}

- \textit{statwt} re-weights the visibilities according to their scatter.
- Needed to down-weight underperforming antennas, or spw’s affected by RFI.
- How/when to use it:
 - The data should be fully calibrated.
 - Recommended to split the data (source) of interest first (some time averaging might be helpful).
 - Spectral lines: use \texttt{fitspw} to exclude strong lines
- Channelized version of \textit{statwt} is coming soon (\textit{statwt2})
Continuum Subtraction: *uvcontsub*

```python
vis = 'my.ms'
fitspw = '0:4~13;52~60'  # can choose multiple spws
excludechans = False or True
want_cont = False
```

IRC+10216: HC3N

![Graph showing continuum subtraction](image)
Doppler Correction: $cvel \rightarrow cvel2$

- The VLA offers Doppler setting, NOT Doppler Tracking
- The line of interest may shift over one or more channels during the observations.
- If adding different observing blocks, one can choose to first Doppler correct ($cvel2$) each block, concatenate ($concat$) and then image ($clean$ or $tclean$).
- Imaging task $clean$ can do this on-the-fly BUT:
 - $cvel2$ must be run if one needs/wants to do self-calibration using a (narrow) strong spectral line.
The End of Part II