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Why new algorithms?
● Instantaneous wide-band capability of the EVLA is the single 

dominant parameter that enables new scientific capabilities

● More instantaneous information about the emission

– Spectral Index, RM,...

●

● Terms inside the integral cannot be accounted-for before imaging

– Conventional imaging ignores DD terms 

– Also ignores time, frequency and polarization dependence

● Solutions: Project-out the effects during imaging + model frequency 
dependence of the sky during deconvolution

● Or resort to spectral cube imaging + image-plane corrections/averaging

Noise ∝
T sys

Aeff √ΔνΔT

V ij (ν)= G ij
DI W ij∫ Pij (s ,ν , t ) I (s ,ν) eι s.bij d s

Direction Dependent (DD) terms
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Plan
● Wide-band Imaging

● Account for frequency dependent sky brightness distribution

● Algorithm: Multi-term Multi-Frequency Synthesis (MT-MFS, MS-MFS)

● Wide-field Imaging: Includes any effect that increases with R

● Non co-planar baseline effect (W-term)

● Effect of antenna PB: Time- and Poln.-dependence

● Algorithm: W-Projection, (WB) A-Projection

● Wide-band Wide-field Imaging

● All of the above + PB frequency dependence

● Algorithm: MT-MFS + (WB) AW-Projection (+ Mosaic) 

● Full-polarization imaging, Computing load and solutions

[Rau & Cornwell, A&A, 2011]

[Cornwell, Golap, Bhatnagar, 
 Proc. IEEE, 2009]

[Bhatnagar et al., A&A, 2008]

[Bhatnagar et al., A&A, 2012]
[WB Mosaic: Rau, Bhatnagar In prep.]

[General review: Rau et al., Proc. IEEE, V. 97 (8) 2009]
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Imaging & Deconvolution: A recap 
● Compute residuals using the original data

● Needs Gridding and de-Gridding during major-cycle iterations

              W-Projection                                                           CS-Clean

                 A-Projection                                                           MS-Clean 

                 WB A-Projection                                                     MT-MFS/MS-MFS

●                  Standard gridding                                                  Hogbom Clean

Image deconvolution
Iterative in nature

Image DomainData Domain

Resample
On regular
grid

FFT

FFT-1
Resample: Regular grid to
Irregularly sampled data

Use all data
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What do we call wide-band?
● When fractional signal bandwidth used for imaging > ~20%

● Plus source spectral index >= -1.0

● Plus target dynamic range > 1000

● Spectral effects for higher source spectral index will become 
significant at lower bandwidth ratios
● Empirical  Dynamic range : 

● Spectral line imaging, by definition, does not require wide-band imaging 
algorithms

Iα
100

S( ν)∝( ν / νo)
−0.7
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Wide-band Imaging Sensitivity

          Frequency Range :                                   (1 – 2  GHz)          (4 – 8 GHz)            (8 – 12 GHz)  

          Bandwidth :                                                    1 GHz                   4 GHz                    4 GHz 
          
          Bandwidth Ratio :                                            2 : 1                      2 : 1                      1.5 : 1

          Fractional Bandwidth :                                     66%                      66%                        40%

Broad-band receivers increase the 'instantaneous' imaging sensitivity of an instrument

         Continuum sensitivity :  
              (at field-center)

            50 MHz → 2 GHz          Theoretical sensitivity improvement :                         times.

In practice, effective broadband sensitivity for imaging depends on bandpass shape, data weights, and regions 
of the spectrum flagged due to RFI ( radio-frequency interference ). 

 cont∝
T sys

Nant N ant−1    

 2GHz
50MHz

≈6

max:min

max−min

max−min/mid



U.Rau                                            VLA Data Reduction Workshop, Mar. 2016 10

Use narrow-band channels – avoid bandwidth smearing

 0

u0=
b 0

c
=
0


u

In the early days of continuum-observing, only one visibility was computed across the entire bandwidth of 
the receiver, and attributed to the reference (or middle) frequency      . Delay-tracking was also done only 
at       . 

The visibility               is mistakenly mapped to                                  

Similarity theorem of Fourier-transforms : 

       => A radial shift in the source position, with frequency.
                   => Radial smearing of the brightness-distribution          

V u

 0

U

V

u0. v0

umax
, vmax

umin
, vmin

Note : Excessive channel-averaging has a similar 
effect.

Contours represent 5 and 10 arcmin distances from the phase-center.

Bandwidth Smearing 
Limits at 1.4 GHz

33 MHz (VLA D-config),  
10 MHz (VLA C-config),  
3 MHz (VLA B-config),  
1 MHz (VLA A-config)

An (exaggerated) example of bandwidth-smearing with a 1-2 GHz signal......
                2 MHz                           200 MHz                             1.0 GHz       
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Frequency-dependent UV-coverages and PSFs

1.0 GHz 1.5 GHz 2.0 GHz 1.0 - 2.0 GHz

Spatial-frequency coverage and imaging properties change with frequency 
: 

Su ,v =
b

=
b
c

- Angular-resolution increases at higher frequencies
- Sensitivity to large scales decreases at higher frequencies
- Wideband UV-coverage has fewer gaps => lower Psf sidelobe levels

V u , v=∬ I l ,m, e
2 iu


lv


m
dl dm

But, when the source intensity varies with frequency,  different channels measure the visibility function 
of different sky-brightness distributions 
                                                                                              =>  Need to model the spectrum as part of 
the 
                                                                                                     image reconstruction
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b

=
b
c- PSF structure scales with frequency

F0 F1 F2 F3 F4 F5



S. Bhatnagar: Wide-field  Wide-band Imaging,  Data Reduction Workshop, Oct. 2017, Socorro 13

Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b

=
b
c- PSF structure scales with frequency

PSFContinuum=∑ν
PSF (ν)
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b

=
b
c- PSF structure scales with frequency

- Due to source Spectral Index, PSF amplitude also changes with frequency
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b

=
b
c- PSF structure scales with frequency

- Due to source Spectral Index, PSF amplitude also changes with frequency

PSF( xo)Continuum=∑ν
I (xo , ν)PSF(x−xo ,ν)
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b

=
b
c- PSF structure scales with frequency

- Due to source Spectral Index, PSF amplitude also changes with frequency

Res(x o)Continuum=∑ν
PSF( x−xo , ν)−∑ν

I (xo ,ν)PSF (x− xoν)
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b

=
b
c- PSF structure scales with frequency

- Due to source Spectral Index, PSF amplitude also changes with frequency

Res(x o)Continuum=∑ν
PSF( x−xo , ν)−∑ν

I (xo ,ν)PSF (ν)
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Wideband Imaging Options

(2)  Combine all frequencies during imaging 
        ( MFS : multi-frequency synthesis )

      - Signal-to-noise ratio : all SPWs

      - Angular resolution is given by
        the highest frequency

      - Imaging fidelity is given by 
         the combined uv-coverage

      - Wideband PB correction is required
        (average gain and spectrum)

Multi-frequency-synthesis is needed to fully 
utilize the wideband uv-coverage and sensitivity 
during image reconstruction. 

The frequency dependence of the sky and 
instrument must be taken into account

(1) Make images for each 
     channel / SPW separately.

    -  Signal-to-noise ratio : one SPW

    -  Angular resolution varies 
        with SPW (smooth to lowest)

    -  Imaging fidelity may change
       across SPWs

    - Primary beam correction can be 
      done per SPW

Cube imaging will suffice for sources with 
simple spatial structures, and where the 
added uv-coverage, sensitivity and angular 
resolution is not required for the target 
science.
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Single-channel vs MFS imaging – Angular Resolution

Simulated Example :  3 flat-spectrum sources + 1 steep-spectrum source ( 1-2 GHz )

Images made separately at different frequencies between 1 and 2 GHz

Combine all 
single-frequency 
images (after 
smoothing)

Use all 
UV-coverage 
together, but 
ignore spectra

Use all UV-coverage together   
+ Model and fit for spectra too

Output : Intensity and Spectral-Index

=> Imaging with a spectrum model :  higher angular resolution + continuum sensitivity. 
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Continuum Imaging : (multi-scale) multi-frequency-synthesis

Sky Model :  Collection of multi-scale flux 
                     components whose amplitudes                                           where 
                     follow a polynomial in frequency

Algorithm : Linear least squares + deconvolution

Parameters :  mode='mfs', nterms=2, reffreq='1.5GHz', multiscale=[0,6,10]

Data Products : Taylor-Coefficient images                      that represent the observed spectrum

I 
sky=∑t

I t −0

 0

t

I t=∑s
[ I s

shp∗I s , t ]

I 0,
m I 1,

m I 2,
m...

I 0
m
=I  0

I1
m
=I  0

 I 2
m
=I  0  −1

2
 

I =I  0  0 
 log / 0 

( I 0,
m I 1,

m I 2,
m...)

(P0, P1, P2,...)
=( I 0,

sky I 1,
sky I 2

sky ...)

Interpretation :
                            - As a power-law ( spectral index and curvature )

                            - PB-correction : Model the average PB-spectrum with a Tayor-polynomial,
                                                       and do a post-deconvolution Polynomial-Division 
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Dynamic-range with MS-MFS : 3C286 example : Nt=1,2,3,4

NTERMS = 1

Rms :  9 mJy -- 1 mJy

DR :  1600 -- 13000

NTERMS = 2

Rms :1 mJy  -- 0.2 mJy

DR :10,000 -- 17,000

NTERMS = 4

Rms 0.14 mJy  -- 80 uJy

DR :>110,000 -- 180,000

NTERMS = 3

Rms : 0.2 mJy -- 85 uJy

DR : 65,000 -- 170,000
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Example of wideband-imaging on extended-emission

Spectral 
Turn-over

Average Spectral Index Gradient in Spectral Index

Intensity Image 

 

=1 =−1

=−2

0.05  ≈ 0.5

 0.2  ≈0.5

multi-scale point-source

    MFS 
(4 terms)









I 0 I 0

=> For extended emission - spectral-index error is dominated by 'division between noisy 
images'
  – a multi-scale model gives better spectral index and curvature maps
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Extended emission – SNR example (a realistic expectation)

These examples used  nterms=2, and about 5 scales.
       
 => Within 1-2 Ghz and 4-8 GHz, can tell-apart regions by their spectral-index ( +/- 0.2 ) if  SNR>100.   
                                                 ( this accuracy will increase with wider bandwidths – 1-3 GHz CABB )

 => These images have a dynamic-range limit of  few x 1000   ---> residuals are artifact-dominated

I 0

I 0

I 0

I 0
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Errors in polynomial fitting + Imaging  ( empirical )

For a 1 Jy point source with spectral index of -1.0  ...

– If spectra are ignored during MFS imaging  => Errors increase with bandwidth.

           Dynamic-range limits for VLA uv-coverage (natural)

              1-2 GHz =>  ~ 1000 
              1-3 GHz =>  few 100

– If spectra are modeled + High signal-to-noise  =>  Need higher-order polynomials to fit a 
power-law

               1 term ( flat spectrum ) => peak intensity error of 0.1 (on 1 Jy)
               2 terms ( linear spectrum ) => peak intensity error of 0.02, spectral index error of  0.1
               3 terms ( quadratic spectrum ) => intensity error of 0.0001, spectral index error of 0.05

– If spectra are modeled + Low signal-to-noise  => Higher-order polynomials give more errors

            The following situations give similar error on spectral index ( ~ 0.1 ) for a point source....
               
                     L-Band + C-Band  :  1-8 GHz  : Sources with signal-to-noise ratio of 10~20
                     L-Band only (1-2 GHz) or C-Band only (4-8 GHz)  : Sources with SNR ~ 40

             For extended emission, spectral index errors <= 0.2 only for SNR > 100......
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Multi-Frequency-Synthesis : Snapshot

Wideband UV-coverage fills the UV-plane radially.....

Observing tip.....
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Multi-Frequency-Synthesis : 30 min

Small time-increments generate good uv-filling => Plan wideband observations in small 
time-chunks, spread out in time to cover more spatial-frequencies at-least once.

Observing tip.....
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What do we call wide-field? 
● Imaging that requires invoking any of the following:

– Corrections for non co-planar baseline effects

– Corrections for the rotational asymmetry of the PB

● Imaging beyond 50% point, mosaicking
– Corrections for the frequency or polarization dependent effects

– Noise limited imaging at 4-,P-,L-, S- (and probably C-Band)

● Because of the radio brightness distribution

● Noise limited imaging of structure comparable to the PB beam-width

● Mosaicking: imaging on scales larger than the PB beam-width 

λ
Bmax

≤ θ f
2

“True” sky
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Why wide-field?
● Primarily due to improved continuum sensitivity

● @L-Band, PB gain ~1 deg. away can be up to 10%

– In the EVLA sensitivity pattern, VLA sensitivity is achieved at the 
location of the VLA-null! 

– No null in the EVLA sensitivity pattern

 

● E.g. a 1% PSF side lobe due to a source away from the center 
is now significantly above continuum thermal noise limit

– This is a largely independent of the total integration time

T and 

50, 25, 15, 10, 6%
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Wide-field Issues
 

ApJ (EVLA Sp. Issue), L20, 2011
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Wide-field sensitivity because of wide-bandwidths

1

4

G55.7+3.4 : Galactic supernova remnant :  4 x 4 degree field-of-view from one EVLA pointing

 1 Jy total flux

 24 arcmin 

(PB: 30 arcmin)

10 micro Jy RMS

=> Need to combine wide-field imaging techniques with wideband..
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Non co-planar baseline: The W-term

● 2D FT approximation of the Measurement Equation breaks 
down

● We measure:

● We interpret it as:

● We should interpret E
1
 as     [E

1
' x Fresnel Propagator]    

V
12
o
=〈E1

'
u , v , w≠0E2

∗
0,0,0〉

V
12
=〈E1u , v , w=0E2

∗0,0,0〉
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PB Effects: Rotation asymmetry
● Only average quantities are available in the image domain

● Asymmetric PB rotation leads to time and direction 
dependent gains

● Time-variability due to rotational asymmetry is stronger 
below ~10% point and in the side-lobes.

● Time-variability due to pointing errors is stronger at ~50% 
point.

 I R
=∑

[PSF −avgPSF ]∗[ PB −avgPB I o ]
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PB Effects: Error Propagation

  

 PB   PSF 

E.g. 5x10-3 E.g. 2x10-2

 I R
=∑


 PSF ∗[ PB  I o

]
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Projection algorithms
● Direction-dependent effects in the image domain are convolutional 

terms in the data domain 

● Projection algorithms for DD corrections:

● Project-out various DD effects as part of the gridding operator

– ME:  

– Construct D, such that 

– Imaging: 

V ij
Obs=Aij∗V oN ij

Dij
T
∗ Aij≈Time/Freq./Pol.   indep.

I=F−1∑ ij
Dij

T∗V ij
Obs=F−1∑ ij

Dij
T
∗ Aij∗V ij

o
+Dij

T
∗N ij

Normalization
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DI Corrections: Standard Calibration 
● DI ME entirely in the visibility domain:

● DI Correction

● Diagonal: “pure” poln. products
● Off-diagonal: Include poln. leakage 

 gaincal, bandpass, gencal, applycal, polcal,...

M ij=gi g j
∗=G ij

V ij
Corr

=Gij
−1V ij

obs

[
V pp

Obs

V pq
Obs

V qp
Obs

V qq
Obs ] = [

M 11 M 12 M 13 M 14

M 21 M 22 M 23 M 24

M 31 M 32 M 33 M 34

M 41 M 42 M 43 M 44
] . [

V pp
o

V pq
o

V qp
o

V qq
0 ]

V ij
Obs = [ J i⊗J j

∗ ] . [V ij
o ] = [ M ij ] . [V ij

o ]

Gij
−1=

G∗

|Gij|
2
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DI Corrections: Standard Calibration 
● DI ME entirely in the visibility domain:

● Full-pol. DI Correction

V ij
Obs = [ J i⊗J j

∗ ] . [V ij
o ] = [ M ij ] . [V ij

o ]

[
V pp

Obs

V pq
Obs

V qp
Obs

V qq
Obs ] = [

M 11 M 12 M 13 M 14

M 21 M 22 M 23 M 24

M 31 M 32 M 33 M 34

M 41 M 42 M 43 M 44
] . [

V pp
o

V pq
o

V qp
o

V qq
0 ]

● Diagonal: “pure” poln. products
● Off-diagonal: Include poln. leakage 

V ij
Corr

= [ M ij
M−1

] . [V ij
Obs ] =

adj M ij
M


det Mij
M

. [V ij

Obs ] Equivalent Complex math.:Gi
−1
=

G∗

∣G∣2

 gaincal, bandpass, gencal, applycal, polcal,...

No pol. leakage case:=
Gq ,ij

M∗

Gp , ij
M Gq , ij

M∗

M ij=gi g j
∗=G ij
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DD Corrections: Projection algorithms
● DD ME entirely in the visibility domain:

● Full-pol. DD corrections

[
V pp

Obs

V pq
Obs

V qp
Obs

V qq
Obs ] = [

M 11 M 12 M 13 M 14

M 21 M 22 M 23 M 24

M 31 M 32 M 33 M 34

M 41 M 42 M 43 M 44
]∗[

V pp
o

V pq
o

V qp
o

V qq
o ]

● Diagonal:      “pure” poln.  PBs
● Off-diagonal: In-beam poln. leakage 

M pq=J p ,i∗J q , j
∗

V ij
Obs = [ J i⊗J j

∗ ]∗ [V ij
o ] = [ M ij ]∗ [V ij

o ]

V ij
Corr

= [ M ij
M−1

]∗ [V ij
Obs ] =

adj M ij
M 

det Mij
M

∗ [ V ij

Obs ]

⊗  = Element-by-element convolution

J  : Each elements is a function

I ij
Corr

=
F [ adjM ij

MT

 ]∗ [ V ij
Obs ]

Fdet M ij
M

During gridding

Image plane normalization
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DD Effects in Full-pol. Imaging
● DD “Mueller” matrix:

Stokes Basis

[Jagannathan, et al., AJ, 2017]

● Affects DR at the 103-4 level
● PB Stokes-Q, -U is few% of Stokes-I

. [
I I

o

IQ
o

IU
o

IV
0

][
I I

Obs

IQ
Obs

IU
Obs

IV
Obs

] =
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A-Projection: Stokes-I Before

Effective PB is time-variant
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A-Projection: Stokes-I After

Effective PB is time-invariant
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A-Projection: Stokes-V Before

Effective PB is polarization-variant
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A-Projection: Stokes-V After

Effective PB is polarization-invariant
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Continuum (MS-MFS) vs Cube Imaging (with PB-correction)

50% of PB

After PB-correction Before PB-correction

MS-MFS : 
Result of wide-band PB-correction after MT-MS-MFS.

Cube : 
Spectral-index map made by PB-correcting single-SPW    
               images smoothed to the lowest resolution.

IC10 Dwarf 
Galaxy :

Spectral Index 
across C-Band.

Dynamic-range 
~ 2000
(~ noise-limited 
image obtained)
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Scales for Multi-Scale Deconvolution
● Thumb rule for selecting largest scale

● Smallest dimension of the largest scale in the image

MT-MFS+
A-Projection

MT-MFS+
WB A-Projection
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Wide-band Wide-field Imaging
● Wide band data to image beyond the ~50% point of the PB at a 

reference frequency

● Bandwidth ratio > ~20%

● FoV > ~HPBW @ reference frequency

● Variable PB: 

● Long integration (rotation), Mosaicking (pointings at 
different PA), in-beam polarization is large (AA) 

PB “Spectral Index” PB Frequency dependence
(blue curve)
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Wide-band Wide-field Imaging
● Characterization of the (WB) A-Projection + MT-MFS

MFS+SI MT-MFS+SI

MT-MFS+
A-Projection

MT-MFS+
WB A-Projection
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Wide-band Wide-field Imaging
● WB A-Projection + MT-MFS

● WB A-Projection for PB

● MT-MFS for sky
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Wide-band Wide-field Imaging
● WB A-Projection + MT-MFS
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Wideband Primary Beams – Mosaic

For single pointings, the wideband PB spectrum is relevant only away from the pointing center.

For mosaics, the wideband PB spectrum must be accounted-for all over the mosaic field of view

25 arcmin 
spacing
(1-2 GHz)

15 arcmin 
spacing
(1-2 GHz)
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DD Effects in Full-pol. Imaging
● DD “Mueller” matrix:

Stokes Basis

[Jagannathan et al., AJ, 2017; PhD Thesis]

● Affects DR at the 103-4 level
● PB Stokes-Q, -U is few% of Stokes-I

. [
I I

o

IQ
o

IU
o

IV
0

][
I I

Obs

IQ
Obs

IU
Obs

IV
Obs

] =



S. Bhatnagar: Wide-field  Wide-band Imaging,  Data Reduction Workshop, Oct. 2017, Socorro 51

Issues in Wide-field Wide-band Full-Pol. Imaging
● PB Effects

● In-beam effects : DD Leakage

● Parametric Aperture Illumination model (Holographic measurements 
not sufficient)

● Pointing Errors

● Mosaic patterns

● Variations with frequency

● Frequency dependence of intrinsic Q and U

● Frequency dependence due to PB

● Computing load

● Larger CF for wide-field imaging: Fundamentally more expensive

● Larger memory footprint: Fundamentally required, any which way you 
cut it
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Full-pol. Imaging: In-beam Leakages
● Leakage (Off-diagonal elements of the Mueller matrix)

● Vary with direction (position in the beam), Parallactic Angle (time) and 
frequency

Radial Slice for Stokes-I and I->Q Leakage
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Full-pol. Imaging: In-beam Leakages
● Leakage (Off-diagonal elements of the Mueller matrix)

● Vary with direction (position in the beam), Parallactic Angle (time) and 
frequency

Radial Slice for Stokes-I and I->Q Leakage
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Full-pol. Imaging: Mosaic Sensitivity Pattern

In-beam Stokes-Q pattern for a 11x11 point mosaick

● Heterogeneous case; 
 rotation due to PA change 
 also ignored  

● The resulting pattern is   
  combination of overlapping 
  Clover-leaf pattern of each 
  pointing

• In-beam DD leakage spreads all 
  across the mosaicked region.
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Full-pol. Imaging: PB Effects
● Parametric model of antenna Aperture Illumination

● Difference between Ant6 and Ant10 in “homogeneous array”

 

R-Beam

L-Beam

Data: R. Perley
Analysis: P.Jagannathan, S.Bhatnagar

In the graph below:  Optical effects should be independent of frequency (e.g. Poln. Squint)
                                   Mechanical effects should show linear trends (e.g. Antenna pointing errors)
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The compute hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data
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The compute hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data

         Data scatter
                    +
   Multi-process computing
                   Vs
Multi-thread CPU computing

70-80% of the compute load!70-80% of the compute load!
(The major cycle)(The major cycle)
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The compute hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data

Compute and cache
             Vs
Compute on demand
(on the GPU/FPGA)

         Data scatter
                    +
   Multi-process computing
                   Vs
Multi-thread CPU computing

70-80% of the compute load!70-80% of the compute load!
(The major cycle)(The major cycle)

Can dominate the memoryCan dominate the memory
footprintfootprint
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The compute hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data

Compute and cache
             Vs
Compute on demand
(on the GPU/FPGA)

Compute and cache
             Vs
Compute on demand
(on the GPU/FPGA)

         Data scatter
                    +
   Multi-process computing
                   Vs
Multi-thread CPU computing

70-80% of the compute load!70-80% of the compute load!
(The major cycle)(The major cycle)

Can dominate the memoryCan dominate the memory
footprintfootprint

Minor cycle compute loadMinor cycle compute load
(Can dominate the total run-time)(Can dominate the total run-time)
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Gridding: Computations

● Gridding/de-gridding: 2D interpolation via convolutional resampling

● 2D convolution functions ← → 2D weighting functions

Data

N
c
 x N

c
 Complex 

Multiply
Single 
Data

N
c
 x N

c
 Complex

Additions

v

u

2D Convolution 
Function

Single 
Data 102 – 5 FLOP

  NN
datadata

 x 12 N x 12 N22

C  C  
     N     N

datadata
= O(10= O(1010 -- 1210 -- 12))
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WF imaging: A-Projection

● WF imaging needs larger convolution functions (CF)

V

U

Antenna aperture FoV on the sky

Number of uv-pixel
across antenna aperture  

Just the main lobe (20% point) 
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WF imaging: A-Projection

● WF imaging needs larger convolution functions (CF)

U

V

Antenna aperture

Number of uv-pixel
across antenna aperture  

Include the first sidelobe (few%)
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WF imaging: A-Projection

● WF imaging needs larger convolution functions (CF)

U

V

Antenna aperture

Number of uv-pixel
across antenna aperture  

..beyond the first sidelobe
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Imaging Memory footprint

● Each sky-image of size N
x
 x N

y
 requires

● 2 x Complex x (N
x
 x N

y
)+ (N

x
 x N

y
) = 5 x (N5 x (N

xx
 x N x N

yy
) floats) floats
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Imaging Memory footprint

● Each sky-image of size N
x
 x N

y
 requires

● 2 x Complex x (N
x
 x N

y
)+ (N

x
 x N

y
) = 5 x (N5 x (N

xx
 x N x N

yy
) floats) floats

Minor cycleMajor cycle

Sky image

Imaging

Mem. Buffers during 
gridding
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MT-MFS: Higher memory footprint

● WB A-Projection: N
A
 x N

SPW 
(order 10x increase in CF memory footprint)

● MS-MFS

● Compute load: Gridding for N
terms 

images+ Convolution of large images

● Memory:          Multiple minor-cycle images (N
scales

)

● Total images (each of size N
x
 x N

y
) : N2

terms
 x N2

scales

Minor 
cycle

Gridding

:
:

Memory storage for: N2

terms
x N2

scales

Compute convolutions of images

Sky 
image

Minor 
cycle

Gridding

Sky 
image

Data

Term=0

Term=N
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Gridding Parallelization (HS 1) - I

● Compute load: N
v
 x 12 N

c
2

● Scatter along data axis

● Deployed in CASA

Memory footprint increases 
Linearly with no. of procs.

Too high for A-array imaging

N
proc

 x 5 x (N
x
 x N

y
)
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Computing models
● Software options

● Run multiple CASA-instances by-hand

● Use CASA parallel computing framework via mpicasa

● Hardware options:

● Multi-core (desktop) machines

● Cluster : For multi-node multi-core computing

– @NRAO or @Your home institutions

● Amazon Web Services (AWS): 

– Amazon’s cloud computing platform

– Largest collection of compute resources in the world (!)

– Use based cost structure

● XSEDE: Extreme Science and Engineering Disocvery Environment

– NSF Funded Supercomputing facilities

– Free to use but only availableto United States PIs
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AWS and XSEDE Overview
● What is AWS?

● Collection of physical resources and tools to enable ad hoc creation of 
a computer

● Create single workstations or arbitrarily large clusters:

– Rich choise of storage (RAM, disk), compute cores, GPUs,...
● Create shareable  from Gbytes to Pbytes

● Pay as you go model

● What is XSEDE?

● 16 Major facilities nation wide.

– But available only to United States Pis
● Resources granted via quarterly proposal/review process

● Primarly focused on broad parallel large jobs (1000’s of cores)

● Typically memory and storage limited compared to NRAO clusters
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CASA on AWS or XSEDE
● Installation effectively as “tar -xz <tarball>”

● NRAO supported CASA installation 

● As AWS public machine images

● As SDSC/Comet (XSEDE)

● Growing documentation repos., shared scripts to follow

● DMSD HPC Group at NRAO will assist the community

● Driven by community interest, limited by competing projects

● Most of the labour is in automation (non-interactive use)

● Highest utility for both AWS and XSEDE is in automated 
batch processing; not efficient for interactive processing
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