Planning (VLA) observations

Loránt Sjouwerman, NRAO
Outline

• General advice on planning any (ground based) observation
• AUI telescopes: the GBT, ALMA, VLBA, and in particular the VLA
 – VLA, VLBA and ALMA are radio frequency interferometers, GBT is a single radio dish
 – VLA is NRAO operated, VLBA is LBO operated (soon NRAO?) and GBT is GBO operated
 – ALMA is a joint endeavor (i.e. somewhat special with its own rules); for ALMA see next talk

• Specific advice for planning VLA observations (I): Proposing
 – Planning starts before proposing/applying for time

• Introduction to the web-based tool to apply for AUI telescope time
 – Proposal Submission Tool (PST) found at https://my.nrao.edu/

• Specific advice for planning VLA observations (II): Scheduling
 – Operations and logistics: dynamic scheduling and scheduling priorities
 – Creating observing schedules is about determining the optimum trade-offs (for YOUR science case)

• Introduction to the web-based tool to schedule VLA observations
 – Observation Preparation Tool (OPT) through PST portal or via https://obs.vla.nrao.edu/opt/
Planning observations
Planning any (ground based) observation

- **Location of the telescope**
 - Determines what part of the sky is visible
 - Declination range, e.g., for the VLA: -44° to +90°
 - Determines the dry/wet seasons and other weather and atmospheric related issues (e.g., troposphere and ionosphere)
 - Determines the level of interfering human activities (light pollution, radio frequency interference)
- **Particular telescope may have closures** (e.g., maintenance) or instrumentation may be unavailable for periods of time, usually well announced
Planning any (ground based) observation

• Scientific and technical justification
 – Operating telescopes costs money; observing time is precious!
 – Time is available for well justified (scientific) projects on a competitive basis
 – **Scientific justification** (next slide) should clearly outline the broader scientific relevance and define goals that outline why only (new) telescope time using this particular instrument on a specific target will achieve that goal and contribute to the general knowledge of the research topic
 – **Technical justification** is to demonstrate that the choice of instrumentation, the observing time and the proposed methodology will yield the result using the requested resources in the most optimal way (i.e., within reason)
 – Projects are ranked by committees based on scientific and technical merit but even a top-notch scientific case may end up without observing time if the justification is poorly argued or technically not feasible
 – Conditional to **constraints** known to the TAC (time/resources available, day/night and other operational conditions, competition)
Scientific and technical justification

• **Why?**
 – Science context and motivation: what makes this subject scientifically interesting for the field?
 – Outline the broader impact of the science topic and the importance for astrophysics

• **What?**
 – Specific science questions: what missing but obtainable knowledge is furthering the field?

• **How?**
 – Specific science goals: how are these observations, resulting observables, going to answer the questions above and how will the science goals be achieved by this program?
Scientific and technical justification

- **Must appeal to non-expert astrophysicist reviewer** (try to avoid all jargon!)
- **Who?**
 - Target selection criteria: why are these objects chosen for the observations, can the sample be smaller, can it instead be done with similar sources at less popular LST ranges?
- **When and where?**
 - Should this wait for a better opportunity, hosted by another telescope, that is, why now and why this telescope?
- **What is needed?**
 - Resources such as instrumental setups, observing time, operational conditions, data reduction requirements
 - *Show it can be done!*
AUI operated telescopes
AUI telescope gallery

- Robert C. Byrd Green Bank Telescope (GBT) operated by GBO
 - Fully steerable single dish antenna in WV
 - 100 meter diameter
 - Unblocked view
 - About 100 MHz to 100 GHz
- Not an interferometer (often used as an array element)
- Separate single dish workshops elsewhere
AUI telescope gallery

- Atacama Large Millimeter Array (ALMA) operated by JAO
 - 66 (50 movable and 4+12 stationary) antennas in Chile
 - 12 & 7 meter diameter
 - Baselines up to 16 km
 - About 50 GHz to 1 THz (1000 GHz, 300 μm)
- Shared instrument (East-Asia, Europe, North America)
- Separate talk here
AUI telescope gallery

- **Very Long Baseline Array (VLBA)** operated by LBO
 - 10 stationary antennas spread across the US
 - 25 meter diameter
 - Baselines up to 8500 km
 - About 300 MHz to 90 GHz
- Frequently combined with others (US, Europe, Asia, etc)
AUI telescope gallery

- Karl G. Jansky **Very Large Array (VLA)** operated by NRAO
 - 27 (+1) movable antennas near Socorro NM!
 - 25 meter diameter
 - Baselines up to 36 km
 - About 70 MHz to 50 GHz

- Site tour on Sunday…
Karl G. Jansky Very Large Array (VLA)

- Movable antennas: compact ("D" configuration) through spread out ("A")
 - Baseline coverage 35 m to ~1 km (D), 3 km (C), 11 km (B), 36 km (A)
 - Highest angular resolution in A, best surface brightness sensitivity in D – for a given frequency
 - Configuration change every ~4 months
 - “Any” array configuration includes regular and “move” time configurations

- Every antenna currently has 8 permanent receiver feeds
 - Continuous frequency coverage from 1 to 50 GHz (working on < 1 GHz)
 - Continuum bandwidth of 2 or up to 8 GHz dual polarization (L: 1 GHz)
 - Switching between feeds takes 10-20 seconds, setups 10-40 seconds

- Extremely flexible WIDAR correlator
 - Up to 64 independent “spectral windows”, 31 kHz to 128 MHz (< 8 GHz)
 - Frequency channels of 2 MHz down to 122 Hz (single pol, without recirculation)
Karl G. Jansky Very Large Array (VLA)

- Movable antennas: compact ("D" configuration) through spread out ("A")
 - Baseline coverage 35 m to ~1 km (D), 3 km (C), 11 km (B), 36 km (A)

- Every antenna currently has 8 permanent receiver feeds
 - Continuous frequency coverage from 1 to 50 GHz (working on < 1GHz)
 - Continuum bandwidth of 2 or up to 8 GHz dual polarization (L: 1GHz)
 - Switching between feeds takes 10-20 seconds, setups 10-40 seconds

- Extremely flexible WIDAR correlator
 - Up to 64 independent "spectral windows", 31 kHz to 128 MHz (< 8 GHz)
 - Frequency channels of 2 MHz down to 122 Hz (single pol, without recirculation)
Karl G. Jansky Very Large Array (VLA)

- Movable antennas: compact ("D" configuration) through spread out ("A")
 - Baseline coverage 35 m to ~1 km (D), 3 km (C), 11 km (B), 36 km (A)
 Highest angular resolution in A, best surface brightness sensitivity in D – for a given frequency
 - Configuration change every ~4 months
 "Any" array configuration includes regular and "move" time configurations
- Every antenna currently has 8 permanent receiver feeds
 - Continuous frequency coverage from 1 to 50 GHz (working on < 1GHz)
 - Continuum bandwidth of 2 or up to 8 GHz dual polarization (L: 1GHz)
 - Switching between feeds takes 10-20 seconds, setups 10-40 seconds
- Extremely flexible WIDAR correlator
 - Up to 64 independent "spectral windows", 31 kHz to 128 MHz (< 8 GHz)
 - Frequency channels of 2 MHz down to 122 Hz (single pol, without recirculation)
Karl G. Jansky Very Large Array (VLA)

- Moveable antennas: compact ("D" configuration) through spread out ("A")
 - Baseline coverage 35 m to ~1 km (D), 3 km (C), 11 km (B), 36 km (A)
 - Highest angular resolution in A, best surface brightness sensitivity in D – for a given frequency
 - Configuration change every ~4 months
- "Any" array configuration includes regular and "move" time configurations
- Every antenna currently has 8 permanent receiver feeds
 - Continuous frequency coverage from 1 to 50 GHz (working on < 1 GHz)
 - Continuum bandwidth of 2 or up to 8 GHz dual polarization (L: 1GHz)
 - Switching between feeds takes 10-20 seconds, setups 10-40 seconds
- Extremely flexible WIDAR correlator
 - Up to 64 independent "spectral windows", 31 kHz to 128 MHz (< 8 GHz)
 - Frequency channels of 2 MHz down to 122 Hz (single pol, without recirculation)
Karl G. Jansky Very Large Array (VLA)

- Movable antennas: compact (“D” configuration) through spread out (“A”)
 - Baseline coverage 35 m to ~1 km (D), 3 km (C), 11 km (B), 36 km (A)
 - Highest angular resolution in A, best surface brightness sensitivity in D – for a given frequency
 - Configuration change every ~4 months
 - “Any” array configuration includes regular and “move” time configurations

- Every antenna currently has 8 permanent receiver feeds
 - Continuous frequency coverage from 1 to 50 GHz (working on < 1 GHz)
 - Continuum bandwidth of 2 or up to 8 GHz dual polarization (L: 1 GHz)
 - Switching between feeds takes 10-20 seconds, setups 10-40 seconds

- Extremely flexible WIDAR correlator
 - Up to 64 independent “spectral windows”, 31 kHz to 128 MHz (< 8 GHz)
 - Frequency channels of 2 MHz down to 122 Hz (single pol, without recirculation)
Karl G. Jansky Very Large Array (VLA)

- Frequency bands
- Field-of-view & mosaicking
- Angular resolution range
- Multi-configuration projects
Proposing for VLA observations
Planning VLA observations: Proposing

• Two proposal rounds per year
 – Deadlines near February 1st and August 1st
 – Both for Regular and Large proposals

• DDT: exploratory/target of opportunity
 – Small amount of time (typically couple of hours)
 – Must argue why the normal deadline could not be met

• Scientific justification should be clear and to the point
 – See a previous slide

• Technical justification should address and resolve all potential issues
 – Includes setup, sources, data size and reduction, analysis, logistics, etc.
Planning VLA observations: Proposing

• **Read the Call for Proposals (CfP)**
 – Changes, new opportunities, special instructions

• **Read the on-line documentation!**
 – Instructions and restrictions change
 – Suggestions and hints for higher success rate

• Helpdesk (https://help.nrao.edu) is available
 – Do not wait until just before the deadline, response may be delayed!
 – Best to start asking for help about 2-3 weeks before the deadline
 • i.e., just after the CfP is issued
Planning VLA observations: Proposing

• VLA receiver band
 – Specify the frequency to observe and why
 – Field-of-view at this frequency
 • Need mosaicking?
• VLA array configuration (A-D):
 – What angular resolution for the smallest details?
 – What angular scale for the largest structure?
 • Need multi-configuration?
 – B and C configurations less oversubscribed, can those be used instead?
• Need for subarrays? Use less antennas in “move” time?
Planning VLA observations: Proposing

• VLA frequency setup
 – Standard continuum observations?
 • In C, X, Ku bands, use 8-bit or 3-bit?
 • Multi-frequency synthesis?
 – Spectral line, with continuum or complex correlator configuration?
 • Bandwidth per spectral window
 – up to 64 independently configurable
 • Channel separation within each spectral window
 • Polarization within each spectral window
 • Other details like rest frequencies, velocities/redshifts
• Data rate for the setup within the limits?
Planning VLA observations: Proposing

• Observing time request
 – Use exposure calculator to estimate sensitivity, image RMS
 • https://obs.vla.nrao.edu/ect
 • Signal-to-noise needed for science, self-calibration?
 • Dynamic range limited or detection experiment?
 – Include overhead for calibration, special processing needs
 – (u,v) coverage considerations (snapshot, full polarization tracks)
 – Specific LST ranges that the sources are above the elevation limit (8°)
 • How many blocks of observing time versus available?
• Is the total project data volume realistic?
 – Data reduction resources (cpu, disks, people, clock time) available?
Planning VLA observations: Proposing

- Observing time request
 - Use exposure calculator to estimate sensitivity, image RMS
 - Signal-to-noise needed for science, self-calibration?
 - Dynamic range limited or detection experiment?
 - Include overhead for calibration
 - (u,v) coverage considerations (snapshot, full polarization tracks)
 - Specific LST ranges that the sources are above the elevation limit (8°)
 - How many blocks of observing time versus available?
 - Is the total project data volume realistic?
 - Data reduction resources (cpu, disks, people, clock time) available?

VLA Exposure Calculator

<table>
<thead>
<tr>
<th>Array Configuration</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Antennas</td>
<td>25</td>
</tr>
<tr>
<td>Number of Polarizations</td>
<td>Single, Dual</td>
</tr>
<tr>
<td>Type of Weighting</td>
<td>Natural, Robust</td>
</tr>
<tr>
<td>Frequency</td>
<td>7.0000 GHz</td>
</tr>
<tr>
<td>Receiver Band</td>
<td>C</td>
</tr>
<tr>
<td>Approximate Beam Size</td>
<td>1.372821°</td>
</tr>
<tr>
<td>Digital Samplers</td>
<td>Automatic, 3 bit, 8 bit</td>
</tr>
<tr>
<td>Elevation</td>
<td>Medium (25-50 degrees)</td>
</tr>
<tr>
<td>Average Weather</td>
<td>Summer</td>
</tr>
<tr>
<td>Calculation Type</td>
<td>Time, BW, Noise/Tb</td>
</tr>
<tr>
<td>Time on Source</td>
<td>4.7090s</td>
</tr>
<tr>
<td>Total Time</td>
<td>5.9381s</td>
</tr>
<tr>
<td>Bandwidth (Frequency)</td>
<td>2.000.000 MHz</td>
</tr>
<tr>
<td>Bandwidth (Velocity)</td>
<td>85,654.9860 km/s</td>
</tr>
<tr>
<td>RMS Noise (units/beam)</td>
<td>100.0000 μJy</td>
</tr>
<tr>
<td>RMS Brightness (temp)</td>
<td>1.8000 K</td>
</tr>
</tbody>
</table>
Planning VLA observations: Proposing

- Observing time request
 - Use **exposure calculator** to estimate sensitivity, image RMS
 - https://obs.vla.nrao.edu/ect
 - Signal-to-noise needed for science, self-calibration?
 - Dynamic range limited or detection experiment?
 - Include overhead for calibration, special processing needs
 - (u,v) coverage considerations (snapshot, full polarization tracks)
 - Specific LST ranges that the sources are above the elevation limit (8°)
 - How many blocks of observing time versus available?
- Is the total project data volume realistic?
 - Data reduction resources (cpu, disks, people, clock time) available?
Planning VLA observations: Proposing

• Is source logistically observable?
 – Weather, e.g., decreased time for high frequencies in late summer

High-frequency observing in January mostly okay, even at LST 22-24h
Mostly poor high-frequency observing conditions in August LST 6-22h
Planning VLA observations: Proposing

- Is source logistically observable?
 - Weather, e.g., decreased time for high frequencies in late summer
 - Time of day, e.g., maintenance during working hours, less RFI at night
 - Available time function of LST, e.g., Galactic LST at 18h in high demand
 - Solar activity, twilight observing, proximity to the Sun

Available time as function of LST: daytime used for maintenance and tests!
Proposal Submission Tool
NRAO Proposal Submission Tool (PST)

- NRAO portal at https://my.nrao.edu (ALMA portal: almascience.org depends on region)
 - Things change, please read the CfP and on-line documentation!
 - Helpdesk (https://help.nrao.edu/) is available, allow for response time
- Create new proposal and select instrument: VLA, VLBA, GBT (& GMVA)
- Follow the tree on the left to construct the proposal
- Submit (and wait)
- Disposition letters 3-4 months later
NRAO Proposal Submission Tool (PST)

- NRAO portal at https://my.nrao.edu (ALMA portal: almascience.org depends on region)
- Helpdesk (https://help.nrao.edu/) is available, allow for response time
- Create new proposal and select instrument: VLA, VLBA, GBT (& GMVA)
- Follow the tree on the left to construct the proposal
- Submit (and wait)
- Disposition letters 3-4 months later
NRAO Proposal Submission Tool (PST)

- NRAO portal at https://my.nrao.edu (ALMA portal: almascience.org depends on region)
 - Things change, please read the CfP and on-line documentation!
 - Helpdesk (https://help.nrao.edu/) is available, allow for response time
- Create new proposal and select instrument: VLA, VLBA, GBT (& GMVA)
- Follow the tree on the left to construct the proposal
- Submit (and wait)
- Disposition letters 3-4 months later
NRAO Proposal Submission Tool (PST)

- NRAO portal at https://my.nrao.edu (ALMA portal: almascience.org depends on region)
 - Things change, please read the CfP and on-line documentation!
 - Helpdesk (https://help.nrao.edu/) is available, allow for response time

- Create new proposal and select instrument: VLA, VLBA, GBT (& GMVA)
- Follow the tree on the left to construct the proposal
- Submit (and wait)
- Disposition letters 3-4 months later
NRAO Proposal Submission Tool (PST)

- NRAO portal at https://my.nrao.edu (ALMA portal: almascience.org depends on region)
 - Things change, please read the CfP and on-line documentation!
 - Helpdesk (https://help.nrao.edu/) is available, allow for response time
- Create new proposal and select instrument: VLA, VLBA, GBT (& GMVA)
- Follow the tree on the left to construct the proposal
- Submit (and wait)
- Disposition letters 3-4 months later
NRAO Proposal Submission Tool (PST)

- NRAO portal at https://my.nrao.edu (ALMA portal: almascience.org depends on region)
 - Things change, please read the CfP and on-line documentation!
 - Helpdesk (https://help.nrao.edu/) is available, allow for response time
- Create new proposal and select instrument: VLA, VLBA, GBT (& GMVA)
- Follow the tree on the left to construct the proposal
- Submit (and wait)
- Disposition letters 3-4 months later
NRAO Proposal Submission Tool (PST)

- NRAO portal at https://my.nrao.edu (ALMA portal: almascience.org depends on region)
 - Things change, please read the CfP and on-line documentation!
 - Helpdesk (https://help.nrao.edu/) is available, allow for response time
- Create new proposal and select instrument: VLA, VLBA, GBT (& GMVA)
- Follow the tree on the left to construct the proposal
- Submit (and wait)
- Disposition letters 3-4 months later
Scheduling of VLA observations
Planning VLA observations: Scheduling

- VLA is dynamically scheduled and uses scheduling priorities
 - A: most likely to be completed
 - C: filler, i.e., when time available and schedule appropriate
- Typically not known when a particular observation takes place
 - For a given array configuration and LST, select from the list of available observing schedules:
 - Highest priority at the top of the list
 - Scheduling priority
 - Science priority (i.e., competition from other PIs)
 - Deselected if science conditions (weather) unfavorable
 - Deselected if operational constraints unfavorable
Planning VLA observations: Scheduling

- VLA is dynamically scheduled and uses scheduling priorities
 - A: most likely to be completed
 - C: filler, i.e., when time available and schedule appropriate
- Typically
 - For a given array configuration and LST, select from the list of available
 - Highest priority at the top of the list
 - Scheduling priority
 - Science priority (i.e., competition from other PIs)
 - Deselected if science conditions (weather) unfavorable
 - Deselected if operational constraints unfavorable
Planning VLA observations: Scheduling

- VLA is dynamically scheduled and uses scheduling priorities
 - A: most likely to be completed
 - C: filler, i.e., when time available and schedule appropriate
- Typically not known when a particular observation takes place
 - For a given array configuration and LST, select from the list of available observing schedules:
 - Highest priority at the top of the list
 - Scheduling priority
 - Science priority (i.e., competition from other PIs)
 - Deselected if science conditions (e.g., weather) unfavorable
 - Deselected if operational constraints unfavorable
Planning VLA observations: Scheduling

- VLA is dynamically scheduled and uses scheduling priorities
 - A: most likely to be completed
 - C: filler, i.e., when time available
- Typically not known when a particular observation takes place
 - For a given array configuration and LST, select from the list of available observing schedules:
 - Highest priority at the top of the list
 - Scheduling priority
 - Science priority (i.e., competition from other PIs)
 - Deselected if science conditions (weather) unfavorable
 - Deselected if operational constraints unfavorable
Planning VLA observations: Scheduling

- Some PI control on trade-offs in the scheduling constraints for higher success rate, especially for scheduling priority B and C
- **Read the documentation:**
 - https://science.nrao.edu/facilities/vla/
 - Observational Status Summary
 - Guide to VLA observing
 - OPT manual
- **Ask for help!**
 - https://help.nrao.edu/
Observation Preparation Tool
Observation Preparation Tool (OPT)

- Use to create VLA observing schedules, a.k.a. “scheduling blocks (SBs)”
- NRAO portal at https://my.nrao.edu/ or via https://obs.vla.nrao.edu/opt/
- Project is created in the OPT a few weeks before the array configuration
 - NRAO fills in read-only details, e.g., PI, time, array, scheduling priority(!)
 - Proposers responsible for schedule and observing constraints (LST, API, ..)
- Things change, please read the on-line documentation!
- Helpdesk (https://help.nrao.edu/) is available, please use it
- Schedule is checked for logistical issues, but not for science!
- Scheduling may require making trade-offs, depending on science goals
- Not all SBs will be completed (priority, competition weather, constraints, operations)
- Observations are directly archived and pipelined, proprietary period
- Proposers may be contacted about the pipelined data products
Observation Preparation Tool (OPT)

- Use to create VLA observing schedules, a.k.a. “scheduling blocks (SBs)”
- NRAO portal at https://my.nrao.edu/ or via https://obs.vla.nrao.edu/opt/
- Project is created in the OPT a few weeks before the array configuration
 - NRAO fills in read-only details, e.g., PI, time, array, scheduling priority(!)
 - Proposers responsible for schedule and observing constraints (LST, API, ..)
- Things change, please read the on-line documentation!
- Helpdesk (https://help.nrao.edu/) is available, please use it
- Schedule is checked for logistical issues, but not for science!
- Scheduling may require making trade-offs, depending on science goals
- Not all SBs will be completed (priority, competition weather, constraints, operations)
- Observations are directly archived and pipelined, proprietary period
- Proposers may be contacted about the pipelined data products
Observation Preparation Tool (OPT)

• Use to create VLA observing schedules, a.k.a. “scheduling blocks (SBs)”
• NRAO portal at https://my.nrao.edu/ or via https://obs.vla.nrao.edu/opt/
• Project is created in the OPT a few weeks before the array configuration
 – NRAO fills in read-only details, e.g., PI, time, array, scheduling priority(!)
 – Proposers responsible for schedule and observing constraints (LST, API, ..)
 • Things change, please read the on-line documentation!
 • Helpdesk (https://help.nrao.edu/) is available, please use it
 • Schedule is checked for logistical issues, but not for science!
• Scheduling may require making trade-offs, depending on science goals
• Not all SBs will be completed (priority/competition, weather, constraints, operations)
• Observations are directly archived and pipelined, proprietary period
• Proposers may be contacted about the pipelined data products
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experiencing the use of
 - SCT, source catalog tool
 - Search for calibrators, create a new source
 - RCT, resource (instrument setup) catalog tool
 - Default continuum setups, create a line setup
 - OPT, observation preparation (scan sequence) tool
 - Change (re)source, scan sequence, play with conditions
- Validate and “submit”
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experience
 - SCT, source catalog tool
 - Search for calibrators, create a new source
 - RCT, resource (instrument setup) catalog tool
 - Default continuum setups, create a line setup
 - OPT, observation preparation (scan sequence) tool
 - Change (re)source, scan sequence, play with conditions
- Validate and “submit”
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experiencing the use of
 - SCT, source catalog tool
 - Search for calibrators, create a new source
 - RCT, resource (instrument setup) catalog tool
 - Default continuum setups, create a line setup
 - OPT, observation preparation (scan sequence) tool
 - Change (re)source, scan sequence, play with conditions
- Validate and “submit”
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experiencing the use of
 - SCT, source catalog tool
 - Search for calibrators, create a new source
 - RCT, resource (instrument setup) catalog tool
 - Default continuum setups, create a line setup
 - OPT, observation preparation (scan sequence) tool
 - Change (re)source, scan sequence, play with conditions
- Validate and “submit”
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experiencing the use of
 - SCT, source catalog tool
 - Search for calibrators, create a new source
 - RCT, resource (instrument setup) catalog tool
 - Default continuum setups, create a line setup
 - OPT, observation preparation (scan sequence) tool
 - Change (re)source, scan sequence, play with conditions
- Validate and “submit”
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experience the use of
 - SCT, source catalog tool
 - SRT, source (observing) tool
 - RCT, resource (instrument setup) tool
 - OPT, observation preparation (scan sequence) tool
- Change (re)source, scan sequence, play with conditions
- Validate and “submit”
OPT “hands-on” tutorial

• Using the OPT, login and navigate, “look and feel”
• Create project SB (scheduling block) from scratch
• Hypothetical project to observe PN
 – Lines and continuum
• Experiencing the use of
 – SCT, source catalog tool
 • Search for calibrators, create a new source
 – RCT, resource (instrument setup) catalog tool
 • Default continuum setups, create a line setup
 – OPT, observation preparation (scan sequence) tool
 • Change (re)source, scan sequence, play with conditions
• Validate and “submit”
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experiencing the use of
 - SCT, source catalog tool
 - RCT, resource (instrument setup) catalog tool
 - OPT, observation preparation (scan sequence) tool
- Change (re)source, scan sequence, play with conditions
- Validate and “submit”
OPT “hands-on” tutorial

- Using the OPT, login and navigate, “look and feel”
- Create project SB (scheduling block) from scratch
- Hypothetical project to observe PN
 - Lines and continuum
- Experiencing the use of
 - SCT, source catalog tool
 - Search for calibrators, create a new source
 - RCT, resource (instrument setup) catalog tool
 - Default continuum setups, create a line setup
 - OPT, observation preparation (scan sequence) tool
 - Change (re)source, scan sequence, play with conditions
- Validate and “submit”
Questions?