UNIVERSITY OF TECHNOLOGY

Feed Analysis ngVLA - SKA and DVA Optics

Jonas Flygare

Onsala Space Observatory, Department of Space, Earth and Environment Chalmers University of Technology

ngVLA Optics Workshop, 19-20 June, 2018 Caltech, Pasadena, CA, US

CHALMERS

Outline

- Background
- Models
- Modelling
- Some Results
- Summary

Credit: Sander Weinreb

SKA Prot.

Credit: SKA Organization

Waveband	Default central frequency
18 cm	1664 MHz
13 cm	2268 MHz
6 cm	4992 MHz
5 cm	6668 MHz (Methanol), 6030 MHz (OH)
4 cm	8418 MHz
1 cm	22230 MHz

Waveband	Default Cer	ntral Frequency		
90 cm	327 MHz		1	
50 cm	610 MHz	DDA		
21 cm	1416 MHz	BRA		HVN
2 cm	15362 MHz			
7 mm	43214 MHz	(UWB 10:1	, 1.5-15.5	GHz)

ngVLA, 214 telescopes

BL:1.2 - 116 GHz (excl. atmos. absorption)

SKA1 MID, ~130 telescopes BL: 0.35 – 15.4 GHz

Credit: Roger Hammargren, ngVLA/NRAO, EVN

ngVLA

SKA

Credit: SKA Organization, ngVLA/NRAO Leif Helldner/EMSS/MeerKat

ngVLA Optics Workshop, 19-20 June, 2018, Caltech, Pasadena, CA, USA

Onsala Space Observatory, Department of Space, Earth and Environment Chalmers University of Technology

4

ngVLA 1.2 – 116 GHz

- 2 Dewars, sharing 1 cryo-vaccum system
 - 4-feed system
 - > 1.2 4.2 GHz (~3.5:1) Prot.
 - ➢ 4.2 15 GHz (~3.5:1)
 - ➤ 15 50 GHz (~3.5:1)
 - ➢ 70 116 GHz (1.65:1)

Credit: Leif Helldner

SKA DVA Shaped Yes Tipping Conf. Down SpillOver Ext. 40° 58° θ_e MR Long Ax. 18m MR Short Ax. 15m Proj. (MR) D. 15m SR D. ~5.2m

- > Spill-over shield, feed down
 - MeerKAT 20°
 - SKA Dish 40°

Figure 6: Spill-over tipping curve for the different configurations.

Credit: "The design of the MeerKAT dish optics" I. P. Theron, R. Lehmensiek, D.I.L. de Villiers ICEAA'12

SKA Band 1 on MeerKAT

Credit: Leif Helldner, OSO

ngVLA 1.2- 4.2 Prototype

- Optimized for SKA Dish, 12 dB @ 58°
 - NOT optimized for DVA = 55°, 16 dB!
 - Keep in mind when looking at data
- Goal η_a > 75 % ave. (achieve > 77% on SKA, > 72 % on DVA)
- S11 < -10 dB (achieve < 12 dB, average -15 dB).
- Dewar dimensions constraints

ngVLA Optics Workshop, 19-20 June, 2018, Caltech, Pasadena, CA, USA

CHALMERS UNIVERSITY OF TECHNOLOGY

Feed (+10mm) in dewar + cone

Feed (+20mm) in dewar + cone

Feed (+30mm) in dewar + cone

-40

-50

-60

C

-10

1.2

2 2.5 E-Plane ± 10

D-Plane ± 10[°]

H-Plane ± 10

E-Plane + 180

D-Plane ± 180

Feed in dewar

Feed (+20mm) in dewar + cone

Feed (+30mm) in dewar + cone

3 3.5

Feed (+10mm) in dewar + cone

Frequency (GHz)

4.2

Onsala Space Observatory, Department of Space, Earth and Environment Chalmers University of Technology

XPD

CHALMERS UNIVERSITY OF TECHNOLOGY

Sub efficiencies, Prime-focus

ngVLA Optics Workshop, 19-20 June, 2018, Caltech Pasadena, CA, USA

Onsala Space Observatory, Department of Space, Earth and Environment Chalmers University of Technology

4.2

4.2

η_a , SKA vs DVA

ngVLA Optics Workshop, 19-20 June, 2018, Caltech, Pasadena, CA, USA

UNIVERSITY OF TECHNOLOGY

T_A , SKA vs DVA

$T_A, |\theta_p| = 0^\circ$ 50 Vertical, Feed + Dewar, SKA Dish Horizontal, Feed + Dewar, SKA Dish 40 - Vertical, Feed + Dewar, DVA Dish Horizontal, Feed + Dewar, DVA Disk 30 7, [K] 20 10 0 1.2 1.7 2.2 2.7 3.2 3.7 4.2 Frequency [GHz] $T_A^{}$, $|\theta_{\rho}| = 60^{\circ}$ 50 - Vertical, Feed + Dewar, SKA Dish Horizontal, Feed + Dewar, SKA Dish 40 - Vertical, Feed + Dewar, DVA Dish Horizontal, Feed + Dewar, DVA Disk 30 $\mathbf{7}_{\mathbf{A}}$ [K] 20 10 0 2.7 3.2 1.2 2.2 3.7 4.2 1.7 Frequency [GHz]

Feed in dewar

Feed in dewar + cone

ngVLA Optics Workshop, 19-20 June, 2018, Caltech Pasadena, CA, USA

2.7

Frequency [GHz]

2.2

3.2

3.7

4.2

0

1.2

1.7

Feed

Feed in dewar

T_{SYS}/η_a , SKA vs DVA

Feed in dewar + cone

ngVLA Optics Workshop, 19-20 June, 2018, Caltech, Pasadena, CA, USA

Frequency [GHz]

Onsala Space Observatory, Department of Space, Earth and Environment Chalmers University of Technology

2.7

Frequency [GHz]

3.2

3.7

4.2

1.7

1.2

2.2

UNIVERSITY OF TECHNOLOGY

T_A , SKA vs DVA

Feed

Feed in dewar

Feed in dewar + cone

SKA Dish (Feed down, shaped, spill-over shield Gregorian Offset, $\theta_e = 58^\circ$)

	ApEff	Ta 0	Ta 60	Tsys 0	Tsys 60	Tsys/Ap Eff 0	Tsys/Ap Eff 60	SEFD 0	SEFD 60	IXR
Feed	77,4	9,8	8,3	17,5	16,1	22,6	20,8	353,7	324,6	13,5
Feed + Dewar	76,5	9,5	8,2	17,3	15,9	22,6	20,9	353,2	326,1	14,7
Feed + Dewar + Cone	76,4	7,4	7,1	15,2	14,8	19,9	19,4	311,0	303,5	15,1

DVA Dish
(Feed up, shaped
Gregorian Offset, $\theta_e = 55^\circ$

	ApEff	Ta 0	Ta 60	Tsys 0	Tsys 60	Tsys/Ap Eff 0	Tsys/Ap Eff 60	SEFD 0	SEFD 60	IXR
Feed	71,9	14,5	21,1	22,2	28,8	31,2	40,4	487,0	631,6	13,9
Feed + Dewar	71,0	14,8	21,2	22,5	29,0	31,9	41,1	498,5	641,8	14,3
Feed + Dewar + Cone	71,8	11,1	15,7	18,8	23,4	26,3	32,7	410,6	511,3	14,6

Dewar beam split effect

Frequency scaling

- WBSPF SKA: 4.6 24 GHz
- Spillover improved with cone

Figure 1: Aperture, spillover and polarization efficiency in the $\underline{\theta}_e = 58^\circ$ SKA Dish for the Band B QRFH in free space (left) and the Band B QRFH inside the cryostat (250 mm diameter IR window) with spillover cone (right). Especially notice the improved spillover efficiency (red) with the cone mounted.

Credit: F. Mokhupuki

Polarization discrepancy – SKA Dish

- High-frequency, 4.6 24 GHz. \geq
- \triangleright Vertical taper at point B decreasing with frequency
 - Efficiency follows \geq

Band-B feed in a primary-dish: No discrepancy

Scaled to 0.46-2.4GHz: No discrepancy

ngVLA Optics Workshop, 19-20 June, 2018, Caltech, Pasadena, CA, USA

Assymetric QRFH solution

Profiles' difference begins only from the "throat point" where the feed opens up;

Future Work

- Feed was optimized for SKA Dish, should be re-optimized for new ngVLA dish
- Re-Opt for sensitivity (spill-over reduction)
- "Smoother" efficiency
- Optics specification 55°, feed up?
- Scale Band B feed to 4 21 GHz for midrange feed?
- Implement fixed dewar dimensions for optimization to mitigate split-beam effect
- Implementation of spill-over cone on dish? Effects on indexer rotation of feeds?

References

"BRAND: Ultra-Wideband Feed Development for the European VLBI Network - A Dielectrically Loaded Decade Bandwidth Quad-Ridge Flared Horn" J. Flygare, M. Pantaleev, and S. Olvhammar 12th European Conference on Antennas and Propagation (EuCAP), London 2018 April.

"Cryogenic 1.2 to 116 GHz Receiver for Large Arrays"
S. Weinreb, H. Mani, W. Zhong, J. Flygare, B. Billade, A. Akgiray, L. Dong., 12th European Conference on Antennas and Propagation (EuCAP), London 2018 April.

"Design of an Asymmetrical Quadruple-ridge Flared Horn Feed: a Solution to Eliminate Polarisation Discrepancy in the Offset Reflecting Systems" B. Dong, J. Yang, M. Pantaleev, J. Flygare, B. Billade 12th European Conference on Antennas and Propagation (EuCAP), London 2018 April.

"The design of the MeerKAT dish optics" I. P. Theron, R. Lehmensiek, D.I.L. de Villiers, ICEAA'12

"Deriving an Optimum Mapping Function for the SKA-Shaped Offset Gregorian Reflectors,", R. Lehmensiek, I. P. Theron, and D. I. L. De Villiers. *IEEE Trans. Antennas Propag.*, vol. 63, no. 11, pp. 4658–4666, 2015.

"A wide-band feed system for SKA band 1 covering frequencies from 350 - 1050 MHz,"
B. Billade, J. Flygare, M. Dahlgren, B. Wästberg, and M. Pantaleev, in *Proceedings of the 10th European Conference on Antennas and Propagation, EuCAP2016*, 10-15 April, 2016.

"Development of the Dish Verification Antenna-1 for the Square Kilometre Array," G. Hovey, G. Lacy, P. Byrnes, J. Fitzsimmons, and M. Fleming, *Published in 2014 16th* International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Victoria, BC, Canada, 2014

"Optimization and Realization of Quadruple-ridge Flared Horn with New Spline-defined Profiles as a High-efficiency Feed for Reflectors over 4.6–24 GHz"., B. Dong, J. Yang, J. Dahlstr"om, J. Flygare, M. Pantaleev, and B. Billade, *IEEE Transactions on Antennas and Propagation, September* 2017 (Submitted).

"Ultrawideband square and circular quadridge horns with near-constant beamwidth," A. Akgiray and S. Weinreb, in International Conference on Ultra-Wideband (ICUWB), Syracuse, NY, USA, September 2012, pp.518–522.

"Circular quadruple-ridged flared horn achieving near-constant beamwidth over multicotave bandwidth: Design and measurements," A. Akgiray, S. Weinreb, W. A. Imbriale, and C. Beaudoin, IEEE Transactions on Antennas and Propagation, vol. 61, no. 3, pp. 1099– 1108, March 2013.

"An optimal beamforming strategy for wide-field surveys with phased-array-fed reflector antennas," M. Ivashina, O. lupikov, R. Maaskant, W. van Cappellen, and T. Oosterloo, Antennas and Propagation, IEEE Transactions on, vol. 59, no. 6, pp. 1864–1875, June 2011

http://ngvla.nrao.edu

https://www.skatelescope.org