Antennas and Feed Design at NRC

Bruce Veidt

NRC Herzberg Astronomy and Astrophysics, Penticton, BC, Canada

ngVLA Optics Workshop, Caltech, 19 June 2018

National Research Council Canada

Conseil national de recherches Canada

Outline

- \triangleright Reflector antenna
 - ⊳ DVA-1
 - ⊳ DVA-2
- \triangleright Feeds
 - Nested coaxial feed (WBSPF)
 - ⊳ AFAD
 - ⊳ Q-Band
- \triangleright Test facilities
 - Near-field antenna range
 - ▷ Hot/Cold Test Facility
 - Surface Reflectivity
 - ⊳ DVA-n

Reflector Antenna: DVA-1

Knee *et al.*, "System performance testing of the DVA1 radio telescope" SPIE Astronomical Telescopes + Instrumentation Conference, 2016

Stability of DVA-1 Primary Reflector

Start Time: 20:22 End Time: 21:43 (81 minutes) Start Temperature*: 27.04°C End Temperature*: 25.21°C (ΔT = 1.8°C) RMS error: 900 μm

Laser tracker measurements.

Start Time: 00:28 End Time: 01:30 (62 minutes) Start Temperature*: 13.18°C End Temperature*: 10.98°C (ΔT =2.2°C) RMS error: 870 μm

*

Reflector Antenna: DVA-2

- \triangleright For ngVLA need better surface accuracy
- $\,\vartriangleright\,$ DVA-1 molds were shipped back to fabricator and reworked
 - ▷ RMS mold error: 0.21 mm ⇐ measured
- \triangleright New primary and secondary surfaces have been fabricated
 - ▷ Primary error: 0.335 mm (unweighted, measured), 0.22 mm (weighted)
 ▷ Ruze efficiency: 80% @ 50 GHz ⇐= calculated
- DVA-1 surfaces will be removed from pedestal and replaced with DVA-2 surfaces
 - ▷ Removal: June–July
 - Back on air: September–October

DVA-2 Structural Improvements: Primary

5

DVA-2 Structural Improvements: Secondary

- > Stiffening the ring around the secondary yields significant improvements
 - ▷ Reinforce shell near rim,
 - ▷ Add CFRP ring to rim,
 - ▷ Add a pair of tie rods

Elevation Angle	RMS Error	Fraction of DVA-1 Error
15°	26 μ m	0.04
55°	$16~\mu{ m m}$	0.04
90 °	24 μ m	0.15

Islam *et al.*, "An improved secondary reflector for DVA-2 radio telescope: A case study on application of structural optimization technique" SPIE Astronomical Telescopes + Instrumentation Conference, 2018

Nested Coaxial Feed (WBSPF)

- \triangleright Based on log-periodic nested coaxial waveguide radiators
- \triangleright Prototype (MSc project) had poor $S_{11} \Longrightarrow$ improve match (PhD project)

Johnson *et al.*, "Frequency multiplexing excitation network for ultra-wideband coaxial waveguide feeds" Elec. Lett., vol. 51, pp.1580–1582, 2015

Du *et al.*, "Wideband Matching of a Coaxial Waveguide Feed Using an Iris Matching Network " ANTEM, August 2018

Advanced Focal Array Demonstrator (AFAD)

- ▷ CMOS LNAs (UofC) for low noise temperature at room temperature
- \triangleright Thick Vivaldi for low loss

Burgess et al. "A Large Phased Array Feed with CMOS Low-Noise Amplifiers" EuCAP 2018

8

National Research Conseil national Council Canada de recherches Canada

Q-Band Receiver

\triangleright 35–50 GHz

- $\triangleright\,$ Goal: $T_{LNA} <$ 12K, $T_{rx} <$ 25K $\triangleright\,$ To be tested on DVA-2
- Horn scaled from Lynn Baker's
 L-band design
 - $\triangleright~$ Edge taper: -16~dB @ 55°
- Will use NRC turnstile-junction OMT (scaled version of ALMA Band-1 OMT)
- \triangleright Will use NRC InP LNA

Q-Band Horn Patterns

Good agreement with measurements made with a planar near-field scanner over a limited angular range ($\pm 60^{\circ}$).

Locke *et al.*, "Feed and Receiver Development at NRC Herzberg" ngVLA Memo #32, 2017 Locke *et al.*, "Q-band single pixel receiver development for the ngVLA and NRC" SPIE Astronomical Telescopes + Instrumentation Conference, 2018

Spherical Near-Field Antenna Range

Туре:	Spherical NF (Orbit/FR)
Probes:	Set of OEWGs covering 1–15 GHz
Quiet zone:	$\sim 1{ m m}^3$
Separation:	< 1.93 m (probe interface to AUT COR)

Near-Field Range: Digital Beamforming

Hot/Cold Test Facility

Base:	2~m $ imes$ $2~m$
Opening:	4.1 m $ imes$ 4.1 m
Height:	2.3 m

- $\,\vartriangleright\,$ Automated operation with an observing script
- $\triangleright \text{ Data reduction uses } \textit{Global Sky Model to estimate } T_{gal}$ $[T_{cold} = T_{gal} + T_{CMB} + T_{atm}]$

Hovey *et al.*, "An Automated System for Measurement of Sensitive Microwave Radiometers" ANTEM, August 2018

Surface Reflectivity Measurement System: Cavity

- ▷ Composite reflectors use embedded metallic foil as reflecting surface
- \triangleright Resonant cavity using TE_{011} mode where transverse currents = 0
 - \triangleright With VNA measure $Q \longrightarrow R_{surf} \longrightarrow T_{eff}$
 - $\triangleright\,$ Three cavities: 8.4, 14.6, and 18.4 GHz

Otoshi *et al.*, "The Electrical Conductivities of Steel and Other Candidate Materials for Shrouds in a Beam-Waveguide Antenna System" IEEE Trans. Instrumentation and Measurement, 1996

Surface Reflectivity Measurement System: Fabry-Pérot

At high frequencies cylindrical cavities are small so use Fabry-Pérot resonator. Using copper foil reflecting layer (high conductivity, high corrosion resistance)

Henke *et al.*, "Fabry-Perot resonator design for the measurement of surface reflectivity" Global Symposium on Millimeter Waves, 2016, DOI:10.1109/GSMM.2016.7500310

Henke *et al.*, "Measurements of Composite Reflectors across Q-Band (33–50 GHz) and W-Band (75–115 GHz)" ANTEM, August 2018

HCTF and DVA-n as Test Facilities

- ▷ EMSS L-Band receiver (uses NRC LNAs & Lynn Baker horn)
 - \triangleright $T_{sys} \cong$ 15 K at 1.4 GHz (zenith)
 - $\triangleright \ T_{spill} \cong \mathbf{4} \ \mathbf{K}$
 - $ho \ \eta_{ap}\cong$ 0.78
- \triangleright Onsala 0.35–1.05 GHz QRFH + Low Noise Factory LNAs
- \triangleright Series of astronomical observations is planned
 - $\triangleright\,$ After upgrading surfaces will be back on air $\sim\,$ Sept.–Oct.
 - ▷ Polarization studies using EMSS and Onsala receivers (Tim Robishaw)
 - Q-band when available

Knee *et al.*, "System performance testing of the DVA1 radio telescope" SPIE Astronomical Telescopes + Instrumentation Conference, 2016

Flygare *et al.*, "Beam pattern measurement on offset Gregorian reflector mounted with a wideband room temperature receiver for the Square Kilometre Array" IEEE Int. Symp. Ant. Prop., July 2018

Thank You

DVA-1 Optics

20

Corrosion Resistance References

- Aluminum: http://www.conways.co.za/pdf/afsa_corrosion_pocket_guide.pdf
- ▷ Copper: http://www.totalmateria.com/Article16.htm

