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INTRODUCTION INVESTIGATION: Causes of depolarization and non-linearities
The upgraded Jansky Very Large Array (JVLA) has enabled long-hoped-for wide-band, high resolution Turbulent Magnetic fields Uniform Magnetic -fields or
polarization observations. The New studies of this kind e.g Pasetto A, et.al (2018) and our work, giving Turbulent fields with a dominant cell
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study of Cygnus A using 2-18 GHz JVLA data shows
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indicates multi-scale B-fields on both large (5-30 kpc) - Q Depends on transverse RM gradients . a / * Depends on the LoS RM. ¥ 4
and small (< 300 pc) scales. There is a strong evidence
that the dominant rotation measures | LARGE-SCALE B-FIELDS NOT RESPONSIBLE FOR THE DEPOLARIZATION
(thousands rad/m/m) are due to large-scale B-fields
In the ambient ICM with field strengths of order a few uG. 200 e a ot love
It is uncertain where the observed depolarization occurs, 19h59m33s 30s 27s 24s . .
but it is consistent with the small-scale turbulent structures in the ICM ' :
and/or internal/local to the lobes of field strengths of order of a few uG Figure 1 X-ray emission map superimposed P | P
.. : : : represent [0.001, 0.3] in steps of 0.015. Whding "
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with resolution at or better than 0.3 arcseconds. By far the best potential instruments for this type of fi : ” P Figure 4 The observed large RMs as a function of : - . L
itting on the 0.3” data. There are large scale, the dispersion. Figure 5 Example of QU fitting of internal depolarization
work are the SKA and ngVLA. uniform fields with scales ~ 5-30 kpc. model with no external Faraday screen.
OBSERVATIONS, DATA PRODUCTS & METHODS OF ANALYSIS TRANSVERSE OR LINE-OF-SIGHT EFFECT?
: : Fractional polarization as a function of resolution at different frequencies.
g‘”tdata rsdutCtlonSS\;veIIe I‘r(;‘:ldj us('jnlg ALPS ; Instrument JVLA The idea is that if we resolve the structure, then the fractional polarization must asymptote to a value corresponding to the intrinsic (internal) polarization.
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. . A Figure 6 Four LoS examples. Fractional polarization as a function of resolution. It is evident that we have insufficient resolution esp at lower frequencies.
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> Multinest, a highly efficient Bayesian inference tool, (F. Feroz et.al, 2009). |

USING HIGH RESOLUTION, HIGH FREQUENCY DATA TO PREDICT WIDEBAND, LOW RESOLUTION DATA
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Cygnus A data, in order to qualitatively determine the field scales involved.
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